Citation: | LIU Jie, LI Min, CHEN Pan-Pan, LI Cun-Lei, DUAN Chang-Jiang, WANG Bao-Chun, XIA Xiao-Duo, MENG Long-Qi. 2025. Characteristics of Palaeoenvironmental Evolution in the Shasan-Shasi Section of the Chexi Depression in the Bohai Bay Basin. South China Geology, 41(1): 136-147. doi: 10.3969/j.issn.2097-0013.2025.01.011 |
Due to the untypical features and comparatively smaller scale, previous studies on gravity flow deposits in shallow marine shelf areas are mostly limited to simple descriptions, so the understanding of their sedimentary characteristics and genesis mechanisms is not sufficient, and the main controlling factors and mechanisms affecting their development are not known. In this paper, the gravity flow deposits of the Shasan-Shasi section in Chexi Depression, Bohai Bay Basin have been studied, the palaeoenvironmental conditions and depositional patterns affecting the developmental characteristics of gravity currents in the Shasan-Shasan section of the Chexi Depression has been analyzed, and geological significance has been further discussed. The palaeoclimate index C and the Fe/Mn index of the Shasan-Shasi section sediments in Chexi Depression indicate that during the sedimentation period of Shasi section the climate has been dry, and slightly more humid during the sedimentation period of the Shasan section, mainly semihumid to humid. The Sr/Ba index indicates that the Shasi section sediments has been deposited in a brackish water environment, while the Shasan section sediments has been deposited in a fresh-brackish water environment. Based on the sediment distribution pattern and the sedimentary structural characteristics in the study area, it could be calculated that the average maximum paleowater depths of the Shasan and Shasi section would be 60.07 m and 20.32 m, respectively. Based on the characteristics of the core samples of the Shasan-Shasi section in Chexi Depression, combined with the sedimentary environment and topography study in the area, it can be deduced that the Shasan section has developed slump deposits, sediment flow deposits, turbidity currents deposits, while the Shasi section has developed mudstone flow deposits.
[1] | 陈 亮,甘华军,祝春荣,田继军.2002.北部湾盆地涠西南凹陷沉降史研究[J]. 新疆石油学院学报,(4):12-17. |
[2] | 杜庆祥,郭少斌,沈晓丽,曹中宏,张晓龙,李媛姝.2016.渤海湾盆地南堡凹陷南部古近系沙河街组一段古水体特征[J]. 古地理学报,18(2):173-183. doi: 10.7605/gdlxb.2016.02.013 |
[3] | 付金华,李士祥,徐黎明,牛小兵.2018.鄂尔多斯盆地三叠系延长组长7段古沉积环境恢复及意义[J]. 石油勘探与开发,45(6):936-946. doi: 10.11698/PED.2018.06.02 |
[4] | 葛毓柱,钟建华,樊晓芳,任启强,邵珠福.2015.山东灵山岛滑塌体内部沉积及构造特征研究[J]. 地质论评,61(3):634-644. |
[5] | 韩 敏,操应长,王艳忠,刘 晖,李永新.2009.车镇凹陷古近系沙四段—沙三段下亚段沉积相[J]. 油气地质与采收率,16(5):16-18+22+112. doi: 10.3969/j.issn.1009-9603.2009.05.005 |
[6] | 黄军平,杨 田,张 艳,李相博,董岐石,杨占龙,Guilherme Bozetti,郑泽宇.2023.湖相细粒沉积岩沉积动力学机制与沉积模式—以鄂尔多斯盆地铜川地区延长组长7油层组露头为例[J]. 沉积学报,41(4):1227-1239. |
[7] | 康 逊,靳 军,胡文瑄,杨 召,曹 剑,吴海光.2015.重力流研究评述及玛湖斜坡区百口泉组重力流类型[J]. 新疆石油地质,36(3):369-378. doi: 10.7657/XJPG20150324 |
[8] | 康玉柱,张金亮,徐耀辉,李 阳.2023.多物源体系下砂砾岩储层差异性孔隙演化模式——以车镇凹陷沙三段、沙四段为例[J]. 长江大学学报(自然科学版),20(5):1-20. |
[9] | 蓝先洪,马道修,徐明广,周清伟,张光威.1987.珠江三角洲若干地球化学标志及指相意义[J]. 海洋地质与第四纪地质,(1):39-49. |
[10] | 李洪楠.2020.断陷湖盆陡坡带重力流沉积特征及模式——以辽河西部凹陷兴马地区沙三段为例[J]. 石油地质与工程,34(4):12-18. doi: 10.3969/j.issn.1673-8217.2020.04.003 |
[11] | 李 茹. 2008. 车西地区古潜山储层裂缝系统形成机理与有利储层预测[D]. 中国石油大学(华东)博士学位论文. |
[12] | 茆书巍,郝雪峰,巩建强,张鹏飞.2021.东营凹陷民丰地区沙四段古水体量化恢复及其地质意义[J]. 地质论评,67(S1):105-106. |
[13] | 孙彩蓉. 2017. 鄂尔多斯盆地东缘石炭—二叠系页岩沉积相及微量元素地球化学研究[D]. 中国地质大学(北京)硕士学位论文. |
[14] | 孙际茂,娄亚利,高利军,鲍振襄.2007.中前寒武系金矿地质及相关成矿问题探讨[J]. 地质与资源,(3):189-195. doi: 10.3969/j.issn.1671-1947.2007.03.005 |
[15] | 王 健,操应长. 2013. 干旱气候背景下陆相高频振荡性湖盆沉积作用——以东营凹陷下始新统为例[C]. //第一届国际古地理学会议论文集. |
[16] | 杨海欧,王长城,李文杰,董 华,龚晓星.2017.基于微量元素比值分析方法研究川东南地区小河坝组沉积环境和古气候环境[J]. 岩矿测试,36(3):289-296. |
[17] | 杨 田,操应长,田景春.2021.浅谈陆相湖盆深水重力流沉积研究中的几点认识[J]. 沉积学报,39(1):88-111. |
[18] | 杨万芹. 2018. 东营凹陷沙三下-沙四上亚段页岩岩相特征及发育规律[D]. 中国石油大学(华东)博士学位论文. |
[19] | 于兴河,姜 辉,施和生,侯国伟.2007.珠江口盆地番禺气田沉积特征与成岩演化研究[J]. 沉积学报,(6):876-884. doi: 10.3969/j.issn.1000-0550.2007.06.009 |
[20] | 余 烨,王 莉,尹太举,张兴强,黄俨然,曹涛涛.2020.下刚果盆地早白垩世巴雷姆晚期深水重力流沉积的发现及意义[J]. 古地理学报,22(4):620-634. |
[21] | 张 彬,姚益民.2013.利用微量元素统计分析东营凹陷新生代沙四晚期湖泊古环境[J]. 地层学杂志,37(2):186-192. |
[22] | 张 军,白玉彬,闫新智,赵靖舟,徐 宁. 2024. 鄂尔多斯盆地富县地区长7段深水重力流沉积及勘探意义[J/OL]. 沉积学报. https://doi.org/10.14027/j.issn.1000-0550.2024.059. |
[23] | 张青青,操应长,刘可禹,杨 田,王艳忠,贾光华,刘蠢金.2017.东营凹陷滑塌型重力流沉积分布特征及三角洲沉积对其影响[J]. 地球科学,42(11):2025-2039. |
[24] | 张世奇,任延广.2003.松辽盆地中生代沉积基准面变化研究[J]. 长安大学学报(地球科学版),(2):1-5. |
[25] | 张永辉,夏 斌,万念明,万志峰,施秋华,蔡 嵩.2010.车西洼陷构造演化对油气成藏的控制作用[J]. 大地构造与成矿学,34(4):593-598. |
[26] | 邹才能,冯有良,杨 智,蒋文琦,张天舒,张 洪,王小妮,朱吉昌,魏琪钊.2023.中国湖盆细粒重力流沉积作用及其对页岩油“甜点段”发育的影响[J]. 石油勘探与开发,50(5):883-897. |
[27] | 邹才能,赵政璋,杨 华,付金华,朱如凯,袁选俊,王 岚.2009.陆相湖盆深水砂质碎屑流成因机制与分布特征——以鄂尔多斯盆地为例[J]. 沉积学报,27(6):1065-1075. |
[28] | Clare M A, Clarke J E H, Talling P J, Cartigny M J B, Pratomo D G. 2016. Preconditioning and triggering of offshore slope failures and turbidity currents revealed by most detailed monitoring yet at a fjord-head delta[J]. Earth and Planetary Science Letters, 450: 208-220. doi: 10.1016/j.jpgl.2016.06.021 |
[29] | Clarke J E H. 2016. First wide-angle view of channelized turbidity currents links migrating cyclic steps to flow characteristics[J]. Nature communications, 7(1): 11896. doi: 10.1038/ncomms11896 |
[30] | Galy V, France-Lanord C, Beyssac O, Faure P, Kudrass H, Palhol F. 2007. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system[J]. Nature, 450(7168): 407-410. doi: 10.1038/nature06273 |
[31] | Huang Y T, Tan X F, Liu E T, Wang J, Wang J P. 2021. Sedimentary processes of shallow-marine turbidite fans: An example from the Huangliu Formation in the Yinggehai Basin, South China Sea[J]. Marine and Petroleum Geology, 132: 105191. doi: 10.1016/j.marpetgeo.2021.105191 |
[32] | Kane I A, Clare M A, Miramontes E, Wogelius R, Rothwell J J, Garreau P, Pohl F. 2020. Seafloor microplastic hotspots controlled by deep-sea circulation[J]. Science, 368(6495): 1140-1145. doi: 10.1126/science.aba5899 |
[33] | Kolla V, Bourges P, Urruty J M, Safa P. 2001. Evolution of deep water Tertiary sinuous channels offshore Angola(West Africa) and implications for reservoir architecture[J]. AAPG Bulletin, 85: 1371-1405. |
[34] | Mulder T, Alexander J. 2001. The physical character of subaqueoussedimentary density flows and their deposits[J]. Sedimentology, 48: 269-299. doi: 10.1046/j.1365-3091.2001.00360.x |
[35] | Okay S, Jupinet B, Lericolais G, Cifci G, Morigi C. 2011. Morphological and stratigraphic investigation of a Holocene subaqueous shelf fan, north of the Istanbul Strait in the Black Sea[J]. Turkish Journal of Earth Sciences, 20(3): 287-305. |
[36] | Shanmugam G. 2013. New perspectives on deep-water sandstones: Implications[J]. Petroleum Exploration and Development, 40(3): 316-324. doi: 10.1016/S1876-3804(13)60038-5 |
[37] | Talling P J. 2013. Hybrid submarine flows comprising turbidity current and cohesive debris flow: Deposits, theoretical and experimental analyses, and generalized models[J]. Geosphere, 9(3): 460-488. doi: 10.1130/GES00793.1 |
[38] | Tokuhashi S. 1996. Shallow-marine turbiditic sandstones juxtaposed with deep-marine ones at the eastern margin of the Niigata Neogene backarc basin, Central Japan[J]. Sedimentary Geology, 104: 99-116. doi: 10.1016/0037-0738(95)00123-9 |
[39] | US Department of the Interior. 2004. Deepwater Gulf of Mexico 2004: America's expanding frontier[Z]. |
[40] | Villa E, Bahamonde J R. 2001. Accumulations of Ferganites (Fusuli-nacea) in shallow turbidite deposits from the Carboniferous of Spain[J]. The Journal of Foraminiferal Research, 31: 173-190. doi: 10.2113/31.3.173 |
[41] | Wang J H, Xie X N, Pang X, Liu B J. 2017. Storm-reworked shallow-marine fans in the Middle Triassic Baise area, South China[J]. Sedimentary Geology, 349: 33-45. doi: 10.1016/j.sedgeo.2016.12.007 |
[42] | Weimer P, Slatt R M. 2004. Petroleum systems of deep water settings[M]. Tulsa, USA: Society of Exploration Geophysicists and European Association of Geoscientists and Engineers. |
[43] | Yang R C, Jin Z J, Van Loon A J, Han Z Z, Fan A P. 2017. Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, central China: Implications for unconventional petroleum development[J]. AAPG Bulletin, 101(1): 95-117. doi: 10.1306/06101615095 |
[44] | Yang T, Cao Y C, Wang Y Z, Li Y, Zhang S M. 2015. Status and trends in research on deep‐water gravity flow deposits[J]. Acta Geologica Sinica, 89(2): 610-631. doi: 10.1111/1755-6724.12451 |
Geographical location map of the Chexi area in Bohai Bay Basin (a) and structural map of Chexi area (b)
Variation of major and trace elements with depth in the Shasan-Shasi section of Che 271 wells
Element ratio profile for the Shasan-Shasi subsection
Scatter plot of redox indicator V/(V+Ni) in the Shasan-Shasi section of Chexi Depression
Paleohydrological analyses of cores from Che 660 wells in the Shasan-Shasi section of the Chexi Depression
Characteristics of gravity flow deposition in Shasan-Shasi section of Chexi Depression
Gravity flow evolution pattern in the Shasan section of the Chexi Depression
Gravity flow evolution pattern in the Shasi section of the Chexi Depression