2025 Vol. 41, No. 3
Article Contents

CHEN Jianwen, LUO Di, YUAN Yong, LI Qing, ZHAO Hualin, WANG Jianqiang, SUN Jing. Typical cases of global marine geological carbon storage and its implications for China[J]. Marine Geology Frontiers, 2025, 41(3): 1-13. doi: 10.16028/j.1009-2722.2025.023
Citation: CHEN Jianwen, LUO Di, YUAN Yong, LI Qing, ZHAO Hualin, WANG Jianqiang, SUN Jing. Typical cases of global marine geological carbon storage and its implications for China[J]. Marine Geology Frontiers, 2025, 41(3): 1-13. doi: 10.16028/j.1009-2722.2025.023

Typical cases of global marine geological carbon storage and its implications for China

More Information
  • As one of the application scenarios of CCUS, marine carbon dioxide (CO2) geological storage is an effective way to achieve carbon emission reduction in coastal areas. Based on the analysis of typical cases of global marine CO2 geological storage, this paper believes that China has great potential for CO2 storage. In the next step, the site selection of pilot projects should pay attention to the evaluation of target-level and site-level sequestration potential, carry out classified site selection according to different conditions, and monitor geological risks throughout the pilot projects. According to the source-sink match of CO2 geological storage in different basins in China's sea area and the construction conditions, the following is proposed: The CO2 associated gas storage project in offshore oil and gas fields is a type of priority pilot project, and the cooperation between CO2 enhanced oil/gas recovery and storage has practical application value. The storage project of depleted oil and gas reservoirs is an important choice for pilot projects, and the whole-chain large-scale offshore saline aquifer CO2 reservoir storage project is the future development direction.

  • 加载中
  • [1] 彭雪婷,吕昊东,张贤. IPCC AR6报告解读:全球碳捕集利用与封存(CCUS)技术发展评估[J]. 气候变化研究进展,2022,18(5):580-590.

    Google Scholar

    PENG X T,LYU H D,ZHANG X. Interpretation of IPCC AR6 report on carbon capture,utilization and storage(CCUS) technology development[J]. Climate Change Research,2022,18(5):580-590.

    Google Scholar

    [2] The Intergovernmental Panel on Climate Change. Climate change 2022:mitigation of climate change[R]. The Intergovernmental Panel on Climate Change,2022.

    Google Scholar

    [3] 张贤,杨晓亮,鲁玺,等. 中国二氧化碳捕集利用与封存 (CCUS) 年度报告 (2023)[R]. 北京:中国21世纪议程管理中心,全球碳捕集与封存研究院,清华大学,2023.

    Google Scholar

    ZHANG X,YANG X L,LU X,et al. Carbon capture,utilization,and storage (CCUS) progress in China (2023)[R]. Beijing:The Administrative Center for China’s Agenda 21,Global CCS Institute,Tsinghua University,2023.

    Google Scholar

    [4] 蔡博峰,李琦,张贤,等. 中国二氧化碳捕集利用与封存 (CCUS) 年度报告 (2024):中国区域二氧化碳地质封存经济可行性研究[R]. 北京:生态环境部环境规划院,2024.

    Google Scholar

    CAI B F,LI Q,ZHANG X,et al. Carbon capture,utilization,and storage (CCUS) progress in China (2024):economic feasibility study on geological carbon dioxide sequestration in China[R]. Beijing:Chinese Academy of Environmental Planning,2024.

    Google Scholar

    [5] 陈建文,王嘹亮,王平康,等. 中国海域沉积盆地咸水层二氧化碳地质封存潜力[J]. 海洋地质与第四纪地质,2024,44(3):98-114.

    Google Scholar

    CHEN J W,WANG L L,WANG P K,et al. Carbon dioxide geological storage potential in saline aquifer of sedimentary basins in China Sea[J]. Marine Geology & Quaternary Geology,2024,44(3):98-114.

    Google Scholar

    [6] 米立军. 全球海上CO2封存现状及中国近海机遇与挑战[J]. 中国海上油气,2023,35(1):123-135.

    Google Scholar

    MI L J. Current status of global CO₂ ocean sequestration and opportunities and challenges in China offshore areas[J]. China Offshore Oil and Gas,2023,35(1):123-135.

    Google Scholar

    [7] Global CCS Institute. Global status of CCS report 2019[R]. Global CCS Institute,2019.

    Google Scholar

    [8] Global CCS Institute. Global status of CCS report 2020[R]. Global CCS Institute,2020.

    Google Scholar

    [9] 陈建文,王嘹亮,王平康,等. 中国海域二氧化碳地质封存潜力评价[R]. 北京:中国地质调查局,2022.

    Google Scholar

    CHEN J W,WANG L L,WANG P K,et al. Evaluation of geological carbon dioxide storage potential in China sea [R]. Beijing:China Geological Survey,2022.

    Google Scholar

    [10] METZ B,DAVIDSON O,CONINCK H D,et al. IPCC special report on carbon dioxide capture and storage[R]. New York:Intergovernmental Panel on Climate Change,2005.

    Google Scholar

    [11] Carbon Sequestration Leadership Forum. Phase II final report-task force for review and identification of standards for CO2 storage capacity measurement[R]. Carbon Sequestration Leadership Forum,2007.

    Google Scholar

    [12] United States Department of Energy. Appendix B:methodology for development of geologic storage estimates for carbon dioxide[R]. Washington:United States Department of Energy,2008.

    Google Scholar

    [13] International Energy Agency Greenhouse Gas R&D Programme. Development of storage coefficients for CO2 storage in deep saline formations[R]. International Energy Agency Greenhouse Gas R&D Programme,2009.

    Google Scholar

    [14] GOODMAN A,BROMHAL G,STRAZISAR B,et al. Comparison of methods for geologic storage of carbon dioxide in saline formations[J]. International Journal of Greenhouse Gas Control,2013,18:329-342. doi: 10.1016/j.ijggc.2013.07.016

    CrossRef Google Scholar

    [15] GOODMAN A,HAKALA A,BROMHAL G,et al. U. S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale[J]. International Journal of Greenhouse Gas Control,2011,5(4):952-965. doi: 10.1016/j.ijggc.2011.03.010

    CrossRef Google Scholar

    [16] BACHU S,BONIJOLY D,BRADSHAW J,et al. CO2 storage capacity estimation:methodology and gaps[J]. International Journal of Greenhouse Gas Control,2007,1(4):430-443. doi: 10.1016/S1750-5836(07)00086-2

    CrossRef Google Scholar

    [17] BACHU B. Review of CO2 storage efficiency in deep saline aquifers[J]. International Journal of Greenhouse Gas Control,2015,40:188-202. doi: 10.1016/j.ijggc.2015.01.007

    CrossRef Google Scholar

    [18] BACHU S. Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change[J]. Environmental Geology,2003,44(3):277-289. doi: 10.1007/s00254-003-0762-9

    CrossRef Google Scholar

    [19] WEIR G J,WHITE S P,KISSLING W M. Reservoir storage and containment of greenhouse gases[J]. Energy Conversion and Management,1995,36(6/9):531-534. doi: 10.1016/0196-8904(95)00060-Q

    CrossRef Google Scholar

    [20] LINDEBERG E. Escape of CO2 from aquifers[J]. Energy Conversion and Management,1997,38:S235-S240. doi: 10.1016/S0196-8904(96)00275-0

    CrossRef Google Scholar

    [21] YAMAMOTO H,ZHANG K,KARASAKI K,et al. Large-scale numerical simulation of CO2 geologic storage and its impact on regional groundwater flow:a hypothetical case study at Tokyo Bay[J]. Energy Procedia,2009,1(1):1871-1878. doi: 10.1016/j.egypro.2009.01.244

    CrossRef Google Scholar

    [22] United States Department of Energy. Carbon sequestration atlas(Fifth edition)[R]. Washington:United States Department of Energy,National Energy Technology Laboratory,2015.

    Google Scholar

    [23] HALLAND E K. Offshore storage of CO2 in Norway,in geophysics and geosequestration[M]. Cambridge:Cambridge University Press,2019:195-208.

    Google Scholar

    [24] BENTHAM M,MALLOWS T,LOWNDES J,et al. CO2 storage evaluation database (CO2 stored). The UK's online storage atlas[J]. Energy Procedia,2014,63:5103-5113. doi: 10.1016/j.egypro.2014.11.540

    CrossRef Google Scholar

    [25] International Energy Agency. 20 years of carbon capture and storage[R]. Paris:International Energy Agency,2016.

    Google Scholar

    [26] CHADWICK A,ARTS R,BERNSTONE C,et al. Best Practice for the Storage of CO2 in Saline Aquifers: Observations and Guidelines from the SACS and CO2 Store Projects[M]. London:British Geological Survey,2008.

    Google Scholar

    [27] Global CCS Institute. Global status of CCS 2021[R]. Melbourne:Global CCS Institute,2021.

    Google Scholar

    [28] PIZARRO J O D E S,PETROBRAS P,BRANCO C C M. Planning and implementing an EOR project for the pre-salt Lula field[J]. World Oil,2012,233(8).

    Google Scholar

    [29] TRUPP M,FRONTCZAK J,TORKINGTON J. The Gorgon CO2 injection project-2012 update[J]. Energy Procedia,2013,37:6237-6247. doi: 10.1016/j.egypro.2013.06.552

    CrossRef Google Scholar

    [30] THOMPSON N,ANDREWS J S,BJØRNARÅ T I. Assessing potential thermo-mechanical impacts on caprock due to CO2 injection:a case study from Northern Lights CCS[J]. Energies,2021,14(16):5054.

    Google Scholar

    [31] UDEN J V. Dutch council of state green-lights Porthos project[J]. Environmental Law Management,2023,32(6):210-211.

    Google Scholar

    [32] HARIS K,SHAJAHAN N,BERGèS B,et al. Evaluation of passive acoustic methods for ambient noise baseline and gas flow rate quantification at a proposed nearshore carbon capture and storage site in Australia[J]. International Journal of Greenhouse Gas Control,2023,129:103961. doi: 10.1016/j.ijggc.2023.103961

    CrossRef Google Scholar

    [33] TIP M. Commercialization of offshore CCS in the gulf of Mexico [R]. Austin:The Gulf Coast Carbon Center. 2021.

    Google Scholar

    [34] Carbon Capture Journal Group. PETRONAS proceeds with Kasawari CCS project offshore Sarawak[J]. Carbon capture journal,2023.

    Google Scholar

    [35] International Energy Agency. Net zero by 2050:a roadmap for the global energy sector [R]. Paris:International Energy Agency,2021.

    Google Scholar

    [36] 中国碳核算数据库. 省级碳排放清单[R]. 北京:中国碳核算数据库(CEADs),2020.

    Google Scholar

    China Emission Accounts and Datasets. Provincial CO2 emission inventories[R]. Beijing:China Emission Accounts and Datasets(CEADs), 2020.

    Google Scholar

    [37] 于志超,杨思玉,刘立,等. 饱和CO2地层水驱过程中的水-岩相互作用实验[J]. 石油学报,2012,33(6):1032-1042.

    Google Scholar

    YU Z C,YANG S Y,LIU L,et al. An experimental study on water-rock interaction during water flooding in formations saturated with CO2[J]. Acta Petrolei Sinica,2012,33(6):1032-1042.

    Google Scholar

    [38] 曹冲,张京伦,朱鸿昊,等. CO2-岩石-地层水相互作用实验[J]. 成都工业学院学报,2016,19(4):3-8.

    Google Scholar

    CAO C,ZHANG J L,ZHU H H,et al. Experimental research on the interaction process between CO2-saturated rocks and formation water[J]. Journal of Chengdu Technological University,2016,19(4):3-8.

    Google Scholar

    [39] 赵仁宝. 溶解气驱油藏中斜井和水平井流入动态[J]. 石油石化节能,1994,10(1):15-19.

    Google Scholar

    ZHAO B R. Inflow behavior of inclined and horizontal wells in dissolved gas drive reservoirs[J]. Energy Conservation in Petroleum & Petrochemical Industry,1994,10(1):15-19.

    Google Scholar

    [40] 李义曼,庞忠和. 二氧化碳地质封存中的水-岩反应动力学模拟:进展及问题[J]. 吉林大学学报:地球科学版,2012(S2):352-360.

    Google Scholar

    LI M Y,PANG Z H. Development and issue on kinetic model of water-rock interaction in CO2 geological sequestion[J]. Journal of Jilin University (Earth Science Edition),2012(S2):352-360.

    Google Scholar

    [41] 马鑫,李旭峰,文冬光,等. 新疆准东地区场地尺度二氧化碳地质封存联合深部咸水开采潜力评估[J]. 水文地质工程地质,2021,48(6):196-205.

    Google Scholar

    MA X,LI X F,WEN D G,et al. A study of the potential of field-scale of CO2 geological storage and enhanced water recovery in the eastern Junggar area of Xinjiang[J]. Hydrogeology and Engineering Geology,2021,48(6):196-205.

    Google Scholar

    [42] 舒娇娇. 深部咸水层封存二氧化碳迁移规律研究[D]. 大连:大连海事大学, 2020.

    Google Scholar

    SHU J J. Study on the migration of carbon dioxide in deep salt water layer[D]. Dalian:Dalian Maritime University. 2020.

    Google Scholar

    [43] 沈平平,廖新维. 二氧化碳地质埋存与提高石油采收率技术[M]. 北京:石油工业出版社,2009.

    Google Scholar

    SHEN P P,LIAO X W. Carbon Dioxide Geological Storage and Enhanced Oil Recovery Technology[M]. Beijing:Petroleum Industry Press,2009.

    Google Scholar

    [44] 郭建强. 中国二氧化碳地质储存适宜性评价与示范工程[M]. 北京:地质出版社,2014.

    Google Scholar

    GUO J Q. Suitability Evaluation and Demonstration Project of CO2 Geological Storage in China[M]. Beijing:Geological Publishing House,2014.

    Google Scholar

    [45] 李冠颖,郭俊志,谢其泰,等. 二氧化碳储存环境对油井水泥性质影响之研究[J]. 岩土力学,2011,32(S2):346-350.

    Google Scholar

    LI G Y,GUO J Z,XIE Q T,et al. Study of mechanical and microscopic properties of API G cement with additives exposed to CO2-rich environment[J]. Rock and Soil Mechanics,2011,32(S2):346-350.

    Google Scholar

    [46] 杜槟. 二氧化碳封存场地三维地质建模及现场注入试验研究[D]. 北京:中国地质大学(北京),2016.

    Google Scholar

    DU B. Carbon dioxide sequestration sites 3D geolog ical modeling and the injection test research[D]. Beijing:China University of Geosciences (Beijing),2016.

    Google Scholar

    [47] 刘雪雁,李鹏春,周蒂,等. 南海北部珠江口盆地惠州21-1油田CO2-EOR与碳封存潜力快速评价[J]. 海洋地质前沿,2017,33(3):56-65.

    Google Scholar

    LIU X Y,LI P C,ZHOU D,et al. Quick assessment of CO2-EOR and CO2 sequestration potential in Huizhou 21-1 Oilfield,Pearl River Mouth Basin,northern South China Sea[J]. Marine Geology Frontiers,2017,33(3):56-65.

    Google Scholar

    [48] 张志超,柏明星,陈巧珍. 二氧化碳埋存井筒的腐蚀行为影响因素[J]. 腐蚀与防护,2021,42(4):54-61. doi: 10.11973/fsyfh-202104010

    CrossRef Google Scholar

    ZHANG Z C,BAI M X,CHEN Q Z. Influencing factors of corrosion behavior of carbon dioxide storage wellbore[J]. Corrosion & Protection,2021,42(4):54-61. doi: 10.11973/fsyfh-202104010

    CrossRef Google Scholar

    [49] 李琦,刘桂臻,蔡博峰,等. 二氧化碳地质封存环境风险评估的空间范围确定方法研究[J]. 环境工程,2018,36(2):27-32.

    Google Scholar

    Li Q,LIU G Z,CAI B F,et al. Principle and methodology of determining the spatial range of environmental risk assessment of carbon dioxide geological storage[J]. Environmental Engineering,2018,36(2):27-32.

    Google Scholar

    [50] 李琦,蔡博峰,陈帆,等. 二氧化碳地质封存的环境风险评价方法研究综述[J]. 环境工程,2019,37(2):13-21.

    Google Scholar

    Li Q,CAI B F,CHEN F,et al. Review of environmental risk assessment methods for carbon dioxide geological storage[J]. Environmental Engineering,2019,37(2):13-21.

    Google Scholar

    [51] 郝艳军,杨顶辉. 二氧化碳地质封存问题和地震监测研究进展[J]. 地球物理学进展,2012,27(6):2369-2383. doi: 10.6038/j.issn.1004-2903.2012.06.012

    CrossRef Google Scholar

    HAO Y J,YANG D H. Research progress of carbon dioxide capture and geological sequestration problem and seismic monitoring research[J]. Progress in Geophysics,2012,27(6):2369-2383. doi: 10.6038/j.issn.1004-2903.2012.06.012

    CrossRef Google Scholar

    [52] 中华人民共和国环境保护部. 二氧化碳捕集、利用与封存环境风险评估技术指南(试行)[S]. 北京:中华人民共和国环境保护部,2016.

    Google Scholar

    Ministry of Environmental Protection of the People's Republic of China. Technical guideline on environmental risk assessment for carbon dioxide capture,utilization and storage (on trial)[S]. Beijing:Ministry of Environmental Protection of the People's Republic of China,2016.

    Google Scholar

    [53] 彭轩明,曹珂. 浅海沉积盆地二氧化碳地质储存潜力与适宜性评价成果报告[R]. 青岛:青岛海洋地质研究所, 2013.

    Google Scholar

    PENG X M,CAO K. Report on evaluation of CO2 geological storage potential and suitability in shallow sea sedimentary basins[R]. Qingdao:Qingdao Institute of Marine Geology, 2013.

    Google Scholar

    [54] 马馨蕊,梁杰,李清,等. 咸水层CO2地质封存研究进展及前景展望[J]. 海洋地质前沿,2024,40(10):1-18.

    Google Scholar

    MA X R,LIANG J,LI Q,et al. Progress and prospects of CO2 geological storage in saline aquifer[J]. Marine Geology Frontiers,2024,40(10):1-18.

    Google Scholar

    [55] 陈建文,孙晶,杨长清,等. 东海陆架盆地新生界咸水层二氧化碳封存地质条件及封存前景[J]. 海洋地质前沿,2023,39(10):14-21.

    Google Scholar

    CHEN J W,SUN J,YANG C Q,et al. Geological conditions and prospects of carbon dioxide storage in the Cenozoic saline water layers of the East China Sea Shelf Basin[J]. Marine Geology Frontiers,2023,39(10):14-21.

    Google Scholar

    [56] YUAN Y,WANG J,CHEN J,et al. Carbon dioxide storage potential of Cenozoic saline aquifers in the South Yellow Sea Basin[J]. Energies,2023,16(4):1578. doi: 10.3390/en16041578

    CrossRef Google Scholar

    [57] CHADWICK R A,WILLIAMS G A,FALCON-SUAREZ I. Forensic mapping of seismic velocity heterogeneity in a CO2 layer at the Sleipner CO2 storage operation,North Sea,using time-lapse seismics[J]. International Journal of Greenhouse Gas Control,2019,90:102793. doi: 10.1016/j.ijggc.2019.102793

    CrossRef Google Scholar

    [58] FURRE A K,EIKEN O,ALNES H,et al. 20 years of monitoring CO2-injection at Sleipner[J]. Energy Procedia,2017,114:3916-3926. doi: 10.1016/j.egypro.2017.03.1523

    CrossRef Google Scholar

    [59] GRUDE S,LANDRø M,DVORKIN J. Pressure effects caused by CO2 injection in the Tubåen Fm. ,the Snøhvit field[J]. International Journal of Greenhouse Gas Control,2014,27:178-187.

    Google Scholar

    [60] SHCHIPANOV A A,KOLLBOTN L,BERENBLYUM R. Characterization and monitoring of reservoir flow barriers from pressure transient analysis for CO2 injection in saline aquifers[J]. International Journal of Greenhouse Gas Control,2019,91:102842. doi: 10.1016/j.ijggc.2019.102842

    CrossRef Google Scholar

    [61] WHITE J C,WILLIAMS G,CHADWICK A. Seismic amplitude analysis provides new insights into CO2 plume morphology at the Snohvit CO2 injection operation[J]. International Journal of Greenhouse Gas Control,2018,79:313-322. doi: 10.1016/j.ijggc.2018.05.024

    CrossRef Google Scholar

    [62] KREFT E,GEEL C R,D'HOORE D,et al. CO2 storage and testing enhanced gas recovery in the K12-B reservoir[C] //23rd World Gas Conference,Amsterdam,2006.

    Google Scholar

    [63] VAN DER MEER L G H,ARTS R J,GEEL C R,et al. K12-B:Carbon dioxide injection in a nearly depleted gas field offshore the Netherlands[M]//GROBE M,PASHIN J C,DODGE R L,Carbon Dioxide Sequestration in Geological Media State of the Science. AAPG Studies in Geology,2009:379-390.

    Google Scholar

    [64] VANDEWEIJER V,HOFSTEE C,GRAVEN H. 13 years of safe CO2 injection at K12-B[C] //Fifth CO2 Geological Storage Workshop. Utrecht:European Association of Geoscientists & Engineers,2018:1-5.

    Google Scholar

    [65] PETERSEN H I,SPRINGER N,WEIBEL R,et al. Sealing capability of the Eocene-Miocene Horda and Lark formations of the Nini West depleted oil field-implications for safe CO2 storage in the North Sea[J]. International Journal of Greenhouse Gas Control,2022,118:103675. doi: 10.1016/j.ijggc.2022.103675

    CrossRef Google Scholar

    [66] PETERSEN H I,AL-MASRI W F,RUDRA A,et al. Movable and non-movable hydrocarbon fractions in an oil-depleted sandstone reservoir considered for CO2 storage,Nini West Field,Danish North Sea[J]. International Journal of Coal Geology,2023,280:104399. doi: 10.1016/j.coal.2023.104399

    CrossRef Google Scholar

    [67] TANAKA Y,SAWADA Y,TANASE D,et al. Tomakomai CCS demonstration project of Japan,CO2 injection in process[J]. Energy Procedia,2017,114:5836-5846. doi: 10.1016/j.egypro.2017.03.1721

    CrossRef Google Scholar

    [68] IKEDA T, TSUJI T. Advanced surface-wave analysis for 3D ocean bottom cable data to detect localized heterogeneity in shallow geological formation of a CO2 storage site[J]. International Journal of Greenhouse Gas Control,2015,39:107-118. doi: 10.1016/j.ijggc.2015.04.020

    CrossRef Google Scholar

    [69] MECKEL T A,FENG Y E,TREVIñO R H,et al. High-resolution 3D marine seismic acquisition in the overburden at the Tomakomai CO2 storage project,offshore Hokkaido,Japan[J]. International Journal of Greenhouse Gas Control,2019,88:124-133. doi: 10.1016/j.ijggc.2019.05.034

    CrossRef Google Scholar

    [70] SAWADA Y,TANAKA J,SUZUKI C,et al. Tomakomai CCS demonstration project of Japan,CO2 injection in progress[J]. Energy Procedia,2018,154:3-8. doi: 10.1016/j.egypro.2018.11.002

    CrossRef Google Scholar

    [71] Northern Lights Joint Ventures. Northern Lights annual report 2023[R]. Stavanger:Northern Lights Joint Ventures,2024.

    Google Scholar

    [72] MENEGUOLO R,SUNDAL A,MARTINIUS A W,et al. Impact of the lower Jurassic Dunlin Group depositional elements on the aurora CO2 storage site,EL001,northern North Sea,Norway[J]. International Journal of Greenhouse Gas Control,2022,119:103723. doi: 10.1016/j.ijggc.2022.103723

    CrossRef Google Scholar

    [73] GENTILE V,CAUCHOIS G,ÅLUND I,et al. Carbon footprint of the Northern Lights JV CO2 transport and storage value chain[R]. Stavanger:Northern Lights Joint Ventures,2023.

    Google Scholar

    [74] 戴金星. 中国东部和大陆架二氧化碳气田(藏)及其气的类型[J]. 大自然探索,1996,15(4):18-20.

    Google Scholar

    DAI J X. Types of carbon dioxide gas fields (reservoirs) and their gas in eastern China and continental shelf[J]. Discovery of Nature,1996,15(4):18-20.

    Google Scholar

    [75] 何家雄,祝有海,黄霞,等. 南海北部边缘盆地不同类型非生物成因CO2成因成藏机制及控制因素[J]. 天然气地球科学,2011,22(6):935-941. doi: 10.11764/j.issn.1672-1926.2011.06.935

    CrossRef Google Scholar

    HE J X,ZHU Y H,HUANG X,et al. Accumulation mechanisms for different geologic types of non-biological CO₂ and controlling factors in north marginal basin,South China Sea[J]. Natural Gas Geoscience,2011,22(6):935-941. doi: 10.11764/j.issn.1672-1926.2011.06.935

    CrossRef Google Scholar

    [76] 何家雄,刘全稳. 南海北部大陆架边缘盆地CO2成因和运聚规律的分析与预测[J]. 天然气地球科学,2004,15(1):12-19. doi: 10.3969/j.issn.1672-1926.2004.01.003

    CrossRef Google Scholar

    HE J X,LIU Q W. The analysis and discussion to the characters on generative cause,migration and distribution of CO2 in the marginal basin in the northern South China Sea[J]. Natural Gas Geoscience,2004,15(1):12-19. doi: 10.3969/j.issn.1672-1926.2004.01.003

    CrossRef Google Scholar

    [77] 李军,邹华耀,周心怀,等. 渤海海域CO2成因与分布主控因素[J]. 中国海上油气,2012,24(2):19-22. doi: 10.3969/j.issn.1673-1506.2012.02.004

    CrossRef Google Scholar

    LI J,ZOU H Y,ZHOU X H,et al. Carbon dioxide origin and the main controls over its distribution in Bohai Sea[J]. China Offshore Oil and Gas,2012,24(2):19-22. doi: 10.3969/j.issn.1673-1506.2012.02.004

    CrossRef Google Scholar

    [78] 刘宝明,夏斌,李绪宣,等. 中国东部及南海西部陆缘CO2气藏形成机理[J]. 矿物岩石地球化学通报,2004,23(3):207-211. doi: 10.3969/j.issn.1007-2802.2004.03.005

    CrossRef Google Scholar

    LIU B M,XIA B,LI X X,et al. The genetic mechanism of CO2 in the East China and the western South China Sea[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2004,23(3):207-211. doi: 10.3969/j.issn.1007-2802.2004.03.005

    CrossRef Google Scholar

    [79] 何家雄,李明兴,陈伟煌,等. 莺琼盆地天然气中CO2的成因及气源综合判识[J]. 天然气工业,2001,21(3):15-21. doi: 10.3321/j.issn:1000-0976.2001.03.005

    CrossRef Google Scholar

    HE J X,LI M X,CHEN W H,et al. Origin of carbon dioxide in natural gas in Yingqiong Basin and its comprehensive gas source discrimination[J]. Natural Gas Industry,2001,21(3):15-21. doi: 10.3321/j.issn:1000-0976.2001.03.005

    CrossRef Google Scholar

    [80] 王振峰,何家雄,裴秋波. 莺-琼盆地和珠江口盆地西部CO2成因及运聚分布特征[J]. 中国海上油气(地质),2003,17(5):293-297.

    Google Scholar

    WANG Z F,HE J X,PEI Q B. The origin and migration-accumulation features of CO2 in Ying-Qiong Basin and the western Pearl River Mouth Basin[J]. China offshore Oil and Gas (Geology),2003,17(5):293-297.

    Google Scholar

    [81] LUO D,YUAN Y,CHEN J,et al. Structural and reservoir characteristics of potential carbon dioxide storage sites in the northern South Yellow Sea Basin,offshore Eastern China[J]. Journal of Marine Science and Engineering,2024,12(10):1733. doi: 10.3390/jmse12101733

    CrossRef Google Scholar

    [82] 可行,陈建文,龚建明,等. 东海陆架盆地CO2地质封存适宜性评价[J]. 海洋地质前沿,2023,39(7):1-12.

    Google Scholar

    KE X,CHEN J W,GONG J M,et al. Suitability evaluation of CO2 sequestration in the East China Sea Shelf Basin[J]. Marine Geology Frontiers,2023,39(7):1-12.

    Google Scholar

    [83] 可行,陈建文,龚建明,等. 珠江口盆地二氧化碳地质封存条件及源汇匹配性分析[J]. 海洋地质与第四纪地质,2023,43(2):55-65.

    Google Scholar

    KE X,CHEN J W,GONG J M,et al. Assessment on geological condition for carbon dioxide sequestration and source-sink matching in the Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology,2023,43(2):55-65.

    Google Scholar

    [84] WANG J,YUAN Y,CHEN J W,et al. Geological conditions and suitability evaluation for CO2 geological storage in deep saline aquifers of the Beibu Gulf Basin (South China)[J]. Energies,2023,16(5):2360. doi: 10.3390/en16052360

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(1)

Article Metrics

Article views(81) PDF downloads(66) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint