2025 Vol. 12, No. 1
Article Contents

WU Shuying, ZHANG Xunxun, XIE Xiaoguo, LUO Bing, YANG Bin, ZHAO Yanggang. Detection of underground disease bodies in municipal drainage pipelines in the central region of Chengdu City[J]. Geological Survey of China, 2025, 12(1): 129-139. doi: 10.19388/j.zgdzdc.2024.168
Citation: WU Shuying, ZHANG Xunxun, XIE Xiaoguo, LUO Bing, YANG Bin, ZHAO Yanggang. Detection of underground disease bodies in municipal drainage pipelines in the central region of Chengdu City[J]. Geological Survey of China, 2025, 12(1): 129-139. doi: 10.19388/j.zgdzdc.2024.168

Detection of underground disease bodies in municipal drainage pipelines in the central region of Chengdu City

More Information
  • Due to the unique underground sand and gravel layer structure and large-scale development and utilization of underground space, road collapse disasters caused by underground disease bodies have occurred frequently in Chengdu City. The ground penetrating radar method was used to detect underground cavities and voids on both sides of municipal drainage pipelines in the central region of Chengdu City. The distribution pattern of cavities and voids and their relationship with subway shield construction were discussed. The results show that a total of 811 cavities and voids were identified in the study area, with the average clearance and volume of the cavity being 0.41 m and 1.86 m3, and the average clearance and volume of the void being 0.12 m and 0.52 m3. The risk levels of cavity and void were basically rated as level Ⅳ and level Ⅲ. One hundred and seventy cavities and voids were found near the subway line, concentrating on Subway Line 3. The overall distribution density of disease bodies in the area is 0.72 per km, the distribution density of the disease bodies passing through the subway lines is about 1.07 per km, and the distribution density of those not passing through the subway road is 0.66 per km. The disease bodies are mainly distributed in the southern part and the pore phreatic area with loose accumulated sand gravel layer, which is also the area with dense subway traffic lines. The river system has little impact on the formation of shallow disease bodies, indicating that the subway shield construction induces the formation of underground disease bodies to a certain extent, under the special environment of sand gravel layer. The research results can provide basis for monitoring, early warning, and treatment of urban underground disease bodies.

  • 加载中
  • [1] 李琬荻. 高地下水位区地铁工程U型结构的设计方法[J]. 中国地质调查, 2018, 5(1): 82-88. doi: 10.19388/j.zgdzdc.2018.01.12

    CrossRef Google Scholar

    Li W D. Design method of subway U-shaped structure in high groundwater level area[J]. Geological Survey of China, 2018, 5(1): 82-88. doi: 10.19388/j.zgdzdc.2018.01.12

    CrossRef Google Scholar

    [2] 谢小国, 张伟, 罗兵, 等. 成都市城市道路塌陷成因及快速探测方法[J]. 中国地质调查, 2022, 9(4): 112-120. doi: 10.19388/j.zgdzdc.2022.04.13

    CrossRef Google Scholar

    Xie X G, Zhang W, Luo B, et al. Causes and rapid detection methods of urban road collapse in Chengdu City[J]. Geological Survey of China, 2022, 9(4): 112-120. doi: 10.19388/j.zgdzdc.2022.04.13

    CrossRef Google Scholar

    [3] 李苍松, 吴丰收, 卢松, 等. 成都地铁3号线盾构背后空洞探测技术初步探讨[C]//2015年全国工程地质学术年会论文集. 长春: 科学出版社, 2015: 482-489.

    Google Scholar

    Li C S, Wu F S, Lu S, et al. Preliminary discussion about detection technology for holes behind the shield Chengdu metro line 3[C]//Proceedings of 2015 National Engineering Geology Academic Annual Meeting. Changchun: Science Press, 2015: 482-489.

    Google Scholar

    [4] 张延杰, 龚晓南. 成都富水砂卵石地层土体颗粒级配特性与强度分析[J]. 地基处理, 2021, 3(5): 368-375.

    Google Scholar

    Zhang Y J, Gong X N. Analysis on strength and characteristics of soil particle gradation in water-rich sandy cobble stratum in Chengdu[J]. Journal of Ground Improvement, 2021, 3(5): 368-375.

    Google Scholar

    [5] 崔孝飞. 城市地下病害体风险评估技术研究[D]. 郑州: 华北水利水电大学, 2019.

    Google Scholar

    Cui X F. Research on Risk Assessment Technology of Urban Underground Diseases[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2019.

    Google Scholar

    [6] 苏永军, 马震, 孟利山, 等. 高密度电阻率法和激发极化法在抗旱找水定井位中的应用[J]. 现代地质, 2015, 29(2): 265-271.

    Google Scholar

    Su Y J, Ma Z, Meng L S, et al. Application of high-density resistivity method and induced polarization method to determine a good well location in groundwater prospecting[J]. Geoscience, 2015, 29(2): 265-271.

    Google Scholar

    [7] 贾辉, 陈昌彦, 张辉, 等. 盾构工后砂卵石地层空洞探测技术方法应用研究[J]. 工程勘察, 2015, 43(4): 88-94.

    Google Scholar

    Jia H, Chen C Y, Zhang H, et al. Application research on cavity detection in sand gravel layer after shield construction[J]. Geotechnical Investigation & Surveying, 2015, 43(4): 88-94.

    Google Scholar

    [8] 李远强, 陈伟, 吴彬. 物探方法在地质灾害勘查中的应用[J]. 城市地质, 2015, 10(S1): 95-100.

    Google Scholar

    Li Y Q, Chen W, Wu B. Application of geophysical explorationm methods in geological calamity survey[J]. Urban Geology, 2015, 10(S1): 95-100.

    Google Scholar

    [9] 梁风, 史文兵, 李洪建, 等. 基于高密度电阻率法和瞬变电磁法的岩溶塌陷综合探测应用[J]. 贵州大学学报: 自然科学版, 2021, 38(1): 16-23.

    Google Scholar

    Liang F, Shi W B, Li H J, et al. Integrated detection applications for karst collapse based on high-density resistivity and transient electromagnetic methods[J]. Journal of Guizhou University (Natural Sciences), 2021, 38(1): 16-23.

    Google Scholar

    [10] 郭秀军, 王兴泰. 用高密度电阻率法进行空洞探测的几个问题[J]. 物探与化探, 2001, 25(4): 306-311, 315.

    Google Scholar

    Guo X J, Wang X T. Some problems in the application of high density resistivity method to cavity exploration[J]. Geophysical and Geochemical Exploration, 2001, 25(4): 306-311, 315.

    Google Scholar

    [11] 潘力, 何青林, 梁生贤, 等. 基于正演模拟的火山岩重磁响应特征研究: 以川西地区二叠系为例[J]. 现代地质, 2021, 35(5): 1471-1479.

    Google Scholar

    Pan L, He Q L, Liang S X, et al. Study on gravity and magnetic response characteristics based on forward modeling: an example from permian volcanic rocks in the western Sichuan Basin[J]. Geoscience, 2021, 35(5): 1471-1479.

    Google Scholar

    [12] 栗宝鹃, 刘栋臣, 张美多, 等. 堤岸隐患探测中的地球物理方法及应用[J]. 工程地球物理学报, 2022, 19(2): 133-140.

    Google Scholar

    Li B J, Liu D C, Zhang M D, et al. Geophysical methods and application in the detection of potential safety hazards in embankment[J]. Chinese Journal of Engineering Geophysics, 2022, 19(2): 133-140.

    Google Scholar

    [13] 王春和, 胡通海, 崔海涛, 等. 探地雷达技术用于地下空洞塌陷灾害探测的创新与实践[J]. 测绘通报, 2013(S2): 13-16, 32.

    Google Scholar

    Wang C H, Hu T H, Cui H T, et al. The innovation and practice of ground penetrating radar technology used for disasters investigation especially for underground cavity or collapse detection[J]. Bulletin of Surveying and Mapping, 2013(S2): 13-16, 32.

    Google Scholar

    [14] 郭士礼, 段建先, 张建锋, 等. 探地雷达在城市道路塌陷隐患探测中的应用[J]. 地球物理学进展, 2019, 34(4): 1609-1613.

    Google Scholar

    Guo S L, Duan J X, Zhang J F, et al. Application of GPR in urban road hidden diseases detection[J]. Progress in Geophysics, 2019, 34(4): 1609-1613.

    Google Scholar

    [15] 许献磊, 马正, 李俊鹏, 等. 地铁隧道管片背后脱空及渗水病害检测方法[J]. 铁道建筑, 2019, 59(7): 51-56.

    Google Scholar

    Xu X L, Ma Z, Li J P, et al. Damage detection method for cavity and water seepage behind the subway tunnel segments[J]. Railway Engineering, 2019, 59(7): 51-56.

    Google Scholar

    [16] 薛建, 曾昭发, 王者江, 等. 探地雷达在城市地铁沿线空洞探测中的技术方法[J]. 物探与化探, 2010, 34(5): 617-621.

    Google Scholar

    Xue J, Zeng Z F, Wang Z J, et al. The technical methods for applying GPR to underground cavity detection along the subway[J]. Geophysical and Geochemical Exploration, 2010, 34(5): 617-621.

    Google Scholar

    [17] 何萌. 地下设施施工造成路基空洞的技术对策研究[D]. 北京: 北京建筑大学, 2018.

    Google Scholar

    He M. Underground Facilities Construction of Subgrade Hollow Technical Counter Measures Research[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2018.

    Google Scholar

    [18] 隋昕展, 杜衍庆, 师海, 等. 道路路基脱空病害雷达波场数值模拟与瞬时属性分析[J]. 科学技术与工程, 2024, 24(2): 782-788.

    Google Scholar

    Sui X Z, Du Y Q, Shi H, et al. Numerical simulation and instantaneous attribute analysis of ground penetring radar wave field for road subgrade void disease[J]. Science Technology and Engineering, 2024, 24(2): 782-788.

    Google Scholar

    [19] 张弛. 探地雷达在成都地铁2号线盾构施工扰动带探测中的应用研究[D]. 成都: 西南交通大学, 2012.

    Google Scholar

    Zhang C. The Application Research of the Ground-Penetrating Radar in Chengdu Metro Line 2 Shield Disturbance Zone[D]. Chengdu: Southwest Jiaotong University, 2012.

    Google Scholar

    [20] 陈思静, 胡祥云, 彭荣华. 城市地下管线探测研究进展与发展趋势[J]. 地球物理学进展, 2021, 36(3): 1236-1247.

    Google Scholar

    Chen S J, Hu X Y, Peng R H. Review of urban underground pipeline detection[J]. Progress in Geophysics, 2021, 36(3): 1236-1247.

    Google Scholar

    [21] 汪文强, 刘争平, 白国东, 等. 探地雷达在地铁盾构施工滞后沉降监测中的应用研究[J]. 地球物理学进展, 2016, 31(1): 354-359.

    Google Scholar

    Wang W Q, Liu Z P, Bai G D, et al. Application of ground penetrating radar in the subsidence monitoring caused by the subway shield construction disturbance[J]. Progress in Geophysics, 2016, 31(1): 354-359.

    Google Scholar

    [22] 王莹, 侯青叶, 杨忠芳, 等. 成都平原农田区土壤重金属元素环境基准值初步研究[J]. 现代地质, 2012, 26(5): 953-962.

    Google Scholar

    Wang Y, Hou Q Y, Yang Z F, et al. Study on environmental criteria for heavy metal of farmland soil in Chengdu Plain[J]. Geoscience, 2012, 26(5): 953-962.

    Google Scholar

    [23] 贾佳, 倪长健, 胡泽勇, 等. 1980—2010年成都灰霾的变化特征及其与气候要素的关联性[J]. 高原气象, 2017, 36(2): 517-527.

    Google Scholar

    Jia J, Ni C J, Hu Z Y, et al. Variation of haze and its relationship with climate change in Chengdu from 1980 to 2010[J]. Plateau Meteorology, 2017, 36(2): 517-527.

    Google Scholar

    [24] 王青, 孙刚, 欧阳伟. 地质雷达在排水管道周边地下病害体探测中的应用[J]. 中国煤炭地质, 2020, 32(6): 74-77.

    Google Scholar

    Wang Q, Sun G, Ouyang W. Application of ground penetrating radar (GPR) in detection of water drainage pipeline periphery underground disasters[J]. Coal Geology of China, 2020, 32(6): 74-77.

    Google Scholar

    [25] Song I, Larkin A. Use of ground penetrating radar at the Faa's national airport pavement test facility (NAPTF)[M]//Aguiar-Moya J P, Vargas-Nordcbeck A, Leiva-Villacorta F, et al. The Roles of Accelerated Pavement Testing in Pavement Sustainability. Cham: Springer, 2016.

    Google Scholar

    [26] 蔡勤波, 王成亮, 张雪. 地质雷达探测城市地下空洞案例分析[J]. 勘察科学技术, 2021(4): 57-61.

    Google Scholar

    Cai Q B, Wang C L, Zhang X. Case analysis of urban underground cavity detected by geological radar[J]. Site Investigation Science and Technology, 2021(4): 57-61.

    Google Scholar

    [27] 房巨山, 王君玲. 兰州市道路地下病害体探地雷达图像解译分析[J]. 地矿测绘, 2021, 37(3): 20-24.

    Google Scholar

    Fang J S, Wang J L. Analysis of GPR image interpretation of underground diseases in Lanzhou city[J]. Surveying and Mapping of Geology and Mineral Resources, 2021, 37(3): 20-24.

    Google Scholar

    [28] 商健林, 张华丽, 王国群. 地质雷达在桥头搭板脱空注浆检测中的应用研究[J]. 公路交通科技: 应用技术版, 2018, 14(5): 226-229.

    Google Scholar

    Shang J L, Zhang H L, Wang G Q. Research on the application of ground penetrating radar in the detection of void injection in bridge deck slab[J]. Highway Transportation Technology (Applied Technology Edition), 2018, 14(5): 226-229.

    Google Scholar

    [29] 崔磊, 张凤录. 地质雷达在北京地铁地下空洞探测中的应用研究[J]. 测绘通报, 2015(S1): 38-40.

    Google Scholar

    Cui L, Zhang F L. Research on the application of ground penetrating radar in the detection of underground caves in Beijing Subway[J]. Bulletin of Surveying and Mapping, 2015(S1): 38-40.

    Google Scholar

    [30] 中华人民共和国住房和城乡建设部. JGJ/T 437—2018城市地下病害体综合探测与风险评估技术标准[S]. 北京: 中国建筑工业出版社, 2018.

    Google Scholar

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. JGJ/T 437—2018 Standard for Comprehensive Detection and Risk Evaluation of Underground Disasters in Urban Area[S]. Beijing: China Architecture & Building Press, 2018.

    Google Scholar

    [31] 段彬, 贺文文, 郑兴, 等. 探地雷达在城市道路空洞检测中的应用[J]. 市政技术, 2020, 38(S1): 128-131.

    Google Scholar

    Duan B, He W W, Zheng X, et al. Application of GPR in cavity detection of urban road[J]. Journal of Municipal Technology, 2020, 38(S1): 128-131.

    Google Scholar

    [32] 许晓莹, 陈斌. 城市道路空洞隐患风险评估方法应用研究[J]. 市政技术, 2021, 39(S1): 149-154, 172.

    Google Scholar

    Xu X Y, Chen B. Application research on risk evaluation of hidden danger of urban road cavities[J]. Journal of Municipal Technology, 2021, 39(S1): 149-154, 172.

    Google Scholar

    [33] 陈昌彦, 肖敏, 贾辉, 等. 城市道路地下病害成因及基于综合探测的工程分类探讨[J]. 测绘通报, 2013(S2): 5-9.

    Google Scholar

    Chen C Y, Xiao M, Jia H, et al. The genesis of urban underground roads diseases and classification of engineer[J]. Bulletin of Surveying and Mapping, 2013(S2): 5-9.

    Google Scholar

    [34] 刘志生. 地铁施工区段地下空洞探测及病害处理研究[J]. 施工技术, 2019, 48(13): 104-107.

    Google Scholar

    Liu Z S. Research on underground cavity detection and disease treatment in subway construction section[J]. Construction Technology, 2019, 48(13): 104-107.

    Google Scholar

    [35] 杨添, 刘丙宇, 林来冠, 等. 探地雷达检测在市政道路管线施工中的应用[J]. 建筑技术开发, 2021, 48(2): 103-105.

    Google Scholar

    Yang T, Liu B Y, Lin L G, et al. Application of GPR detection in municipal road pipeline construction[J]. Building Technology Development, 2021, 48(2): 103-105.

    Google Scholar

    [36] 王惠濂. 探地雷达目的体物理模拟研究结果[J]. 中国地质大学学报: 地球科学版, 1993, 18(3): 266-284.

    Google Scholar

    Wang H L. Ground penetrating radar studies in physical analogue[J]. Earth Science: Journal of China University of Geosciences, 1993, 18(3): 266-284.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(99) PDF downloads(9) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint