2025 Vol. 44, No. 1
Article Contents

CAO Suao, GUO Zhen, CHEN Jiale. 2025. Geological hazard susceptibility evaluation based on improved information model: A case study of the G219 National Highway in Zayu County, Xizang. Geological Bulletin of China, 44(1): 185-200. doi: 10.12097/gbc.2023.10.024
Citation: CAO Suao, GUO Zhen, CHEN Jiale. 2025. Geological hazard susceptibility evaluation based on improved information model: A case study of the G219 National Highway in Zayu County, Xizang. Geological Bulletin of China, 44(1): 185-200. doi: 10.12097/gbc.2023.10.024

Geological hazard susceptibility evaluation based on improved information model: A case study of the G219 National Highway in Zayu County, Xizang

More Information
  • Objective

    Due to the impact of highway construction, geological hazards along roadways occur frequently. The susceptibility evaluation of geological hazards along roadways is a key issue in emergency response and rescue. The evaluation results can provide a scientific basis for disaster prevention and emergency decision-making, helping to mitigate potential losses caused by such hazards.

    Methods

    Along the G219 Highway in Zayu County, 85 geological disaster sites were identified (including 9 landslides, 31 collapses, and 45 debris flows). Based on the developmental characteristics of geological disasters, 11 influencing factors were selected as evaluation indicators: drainage density, road density, peak ground acceleration, seismic response spectrum characteristics, rock groups, geomorphology, DEM, plan curvature, profile curvature, aspect, and slope. A modified information value model combining geological disaster kernel density analysis with the information value method was developed. GIS technology was applied to evaluate the susceptibility of geological disasters in the study area.

    Results

    The results show that the susceptibility evaluation based on the modified information value model aligns closely with the actual distribution of geological disasters. The model demonstrated high predictive accuracy, with an AUC value of 0.836, indicating its significant capability in assessing geological disaster susceptibility.

    Conclusions

    The modified information value model provides superior evaluation accuracy and offers reliable scientific support for urban planning, construction, and geological disaster risk management in Zayu County and surrounding areas.

  • 加载中
  • [1] Chen J G, Zhong L X. 2023. Assessment of rockfall susceptibility along the expressway based on the CF−AHP coupling model: A case study of the Tucheng−Wanglong section of the Rongzun expressway[J]. The Chinese Journal of Geological Hazard and Control, 34(6): 105−115 (in Chinese with English abstract).

    Google Scholar

    [2] Dias H C, Hölbling D, Grohmann C H, 2021. Landslide susceptibility mapping in Brazil: A review[J]. Geosciences, 11(10): 425.

    Google Scholar

    [3] Feng W, Tang Y M, Ma H N. 2021. Comprehensive risk assessment of multi−hazard natural disastersin Xianyang City based on AHP[J]. Northwestern Geology, 54(2): 282−288(in Chinese with English abstract).

    Google Scholar

    [4] Fleuchaus P, Blum P, Wilde M, et al. 2021. Retrospective evaluation of landslide susceptibility maps and review of validation practice[J]. Environmental Earth Sciences, 80: 1−15. doi: 10.1007/s12665-020-09327-2

    CrossRef Google Scholar

    [5] Hao Q, Wei K, Zhao Z W, et al. 2023. Evaluation of geological hazard susceptibility of debris flow based on slope unit: A case study of Xintai City, Shandong Province[J]. Huabei Natural Resources, (2): 106−111(in Chinese with English abstract).

    Google Scholar

    [6] Hou R N, Li Z, Chen N S, et al. 2023. Modeling of debris flow susceptibility assessmentl in Tianshan based on watershed unit and stacking ensemble algorithm[J]. Earth Science, 48(5): 1892−1907 (in Chinese with English abstract).

    Google Scholar

    [7] Huang X P, Zheng L, Du J, et al. 2023. Regional rockfall hazard susceptibility assessment considering combination modes of rock mass dis−l continuities[J]. Safety and Environmental Engineering, 30(1): 163−172(in Chinese with English abstract).

    Google Scholar

    [8] Kang Y H, Wang Y Y, Xia Z J, et al. 2018. Identification and classification of Wuhan urban districts based on POI[J]. Journal of Gcomatics, (1): 81−85 (in Chinese with English abstract).

    Google Scholar

    [9] Lan Z X, Zheng B, Liao D W, et al. 2023. Risk assessment of geological disasters in Dayu town, Sandu county, Guizhou province based on information quantity method and slope unit[J]. Ground Water, 45(5): 160−163 (in Chinese with English abstract).

    Google Scholar

    [10] Li S, Shang Y J, Wei, S Y, et al. 2020. Study on the susceptibility and causes of geohazards of Karakoram highway[J]. Xinjiang Geology, 38(4): 532−538(in Chinese with English abstract).

    Google Scholar

    [11] Meng X R, Pei X J, Liu Q H, et al. 2016. GIS−Based susceptibility assessment of geological hazards along the road from Dujiangyan to Wenchuan by factor analysis[J]. The Chinese Journal of Geological Hazard and Control, 27(3): 106−115(in Chinese with English abstract).

    Google Scholar

    [12] Sun B, Zhu C B, Kang X B, et al. 2022. Susceptibility assessment of debris flows based on information model in Dongchuan, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 33(5): 119−127(in Chinese with English abstract).

    Google Scholar

    [13] Wei Y, 2020. Geological Disaster Susceptibility assessment along expressway in Southwest Mountain area: A case study of Panzhihua−Yanyuan expressway[D]. Master’s Thesis of Chengdu University of Technology (in Chinese with English abstract).

    Google Scholar

    [14] Wu X, Song Y, Chen W, et al. 2023. Analysis of geological hazard susceptibility of landslides in Muli County based on random forest algorithm[J]. Sustainability, 15(5): 4328. doi: 10.3390/su15054328

    CrossRef Google Scholar

    [15] Xu Z H, 2020. Susceptibility Evaluation of geological hazards in Zhen'an section of 345 national highway[D]. Master’s Thesis of Xi 'an University of Science and Technology (in Chinese with English abstract).

    Google Scholar

    [16] Yang R, Yu C Y, Wang Y, 2023. Susceptibility evaluation of geological disaster based on weighted information and GIS method: A case study of Yushe County[J]. Mining Research and Development, 43(2): 163−170(in Chinese with English abstract).

    Google Scholar

    [17] Zeng B, Yang M Y, Shao C J, et al. 2018. Susceptibility assessment of karst collapse of Hangchang Expressway Projects based on analytic hierarchy process[J]. Safety and Environmental Engineering, 25(1): 29−38 (in Chinese with English abstract).

    Google Scholar

    [18] Zhang T. 2015. Research on risk evoluation of geological disasters in Tianshan Highway in Xinjiang[D]. Master’s Thesis of Chongqing Jiaotong Univerisity (in Chinese with English abstract).

    Google Scholar

    [19] Zhou Y, Wang Y S, Zhao X, et al. 2022. Susceptibility assessment of debris flow in Dimaluo River, branch of Nujiang River[J]. Geological Bulletin of China, 41(4): 702−712 (in Chinese with English abstract).

    Google Scholar

    [20] Zhu M L, Tang X L, Yang W L, et al. 2023. Application of optimised SVM model to mudslide susceptibility[J]. Foreign Electronic Measurement Technology, 42(6): 163−170 (in Chinese with English abstract).

    Google Scholar

    [21] 陈建国, 钟连祥. 2023. 基于CF-AHP耦合模型的高速公路沿线崩塌地质灾害易发性评价——以蓉遵高速公路土城−旺隆段为例[J]. 中国地质灾害与防治学报, 34(6): 105−115.

    Google Scholar

    [22] 冯卫, 唐亚明, 马红娜, 等. 2021. 基于层次分析法的咸阳市多灾种自然灾害综合风险评价[J]. 西北地质, 54(2): 282−288.

    Google Scholar

    [23] 郝骐, 魏凯, 赵志伟, 等. 2023. 基于斜坡单元的泥石流地质灾害易发性评价——以山东新泰市为例[J]. 华北自然资源, (2): 106−111.

    Google Scholar

    [24] 侯儒宁, 李志, 陈宁生, 等. 2023. 基于流域单元和堆叠集成模型的天山地区泥石流易发性评估建模[J]. 地球科学, 48(5): 1892−1907.

    Google Scholar

    [25] 黄肖萍, 郑莉, 杜娟, 等. 2023. 考虑岩体结构面组合的区域崩塌灾害易发性评价[J]. 安全与环境工程, 30(1): 163−172.

    Google Scholar

    [26] 康雨豪, 王玥瑶, 夏竹君, 等. 2018. 利用POI数据的武汉城市功能区划分与识别[J]. 测绘地理信息, (1): 81−85.

    Google Scholar

    [27] 兰中孝, 郑冰, 廖德武, 等. 2023. 基于信息量法与斜坡单元的贵州省三都县打鱼镇地质灾害风险评价[J]. 地下水, 45(5): 160−163.

    Google Scholar

    [28] 李坤, 尚彦军, 魏思宇, 等. 2020. 喀喇昆仑公路国内段地质灾害易发性评价及成因分析[J]. 新疆地质, 38(4): 532−538. doi: 10.3969/j.issn.1000-8845.2020.04.018

    CrossRef Google Scholar

    [29] 孟祥瑞, 裴向军, 刘清华, 等. 2016. GIS支持下基于因子分析法的都汶路沿线地质灾害易发性评价[J]. 中国地质灾害与防治学报, 27(3): 106−115.

    Google Scholar

    [30] 孙滨, 祝传兵, 康晓波, 等. 2022. 基于信息量模型的云南东川泥石流易发性评价[J]. 中国地质灾害与防治学报, 33(5): 119−127.

    Google Scholar

    [31] 魏雨. 2020. 西南山区高速公路沿线地质灾害易发性评价——以攀枝花至盐源高速为例[D]. 成都理工大学硕士学位论文.

    Google Scholar

    [32] 徐志浩. 2020.345国道镇安段公路地质灾害易发性评价[D]. 西安科技大学硕士学位论文.

    Google Scholar

    [33] 杨锐, 于春勇, 汪洋. 2023. 基于加权信息量和GIS方法的地质灾害易发性评价——以榆社县为例[J]. 矿业研究与开发, 43(2): 163−170.

    Google Scholar

    [34] 曾斌, 杨木易, 邵长杰, 等. 2018. 基于层次分析法的杭长高速岩溶塌陷易发性评价[J]. 安全与环境工程, 25(1): 29−38.

    Google Scholar

    [35] 张婷. 2015. 新疆天山公路地质灾害危险性评价研究[D]. 重庆交通大学硕士学位论文.

    Google Scholar

    [36] 周粤, 王运生, 赵逊, 等. 2022. 怒江支流迪麻洛河流域泥石流易发性评价[J]. 地质通报, 41(4): 702−712.

    Google Scholar

    [37] 朱木雷, 谭晓玲, 杨伟良, 等. 2023. 优化SVM模型在泥石流易发性中的应用[J]. 国外电子测量技术, 42(6): 163−170.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(9)

Article Metrics

Article views(527) PDF downloads(34) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint