Citation: | GAN Zheng-Qin, YANG Xiao, SHI Wei, WANG Ding, LI Xiao-Dong, SU Hu-Hu, LI Tai-Sheng. 2024. Analysis of the International Supply and Demand Situation of Niobium and Tantalum Resources and Its Implications for the Development of Domestic Niobium and Tantalum Mining. South China Geology, 40(3): 481-490. doi: 10.3969/j.issn.2097-0013.2024.03.004 |
Niobium and tantalum are indispensable rare metals in the global high-tech industry, yet the resource situation for niobium and tantalum in China is not optimistic. Globally, tantalum resources are primarily distributed in Australia and Brazil, while niobium resources are mainly concentrated in Brazil. Regarding niobium and tantalum exports, the Democratic Republic of Congo, Rwanda, and Nigeria play crucial roles in tantalum supply, contributing about two-thirds of the global supply; meanwhile, the global supply of niobium relies heavily on Brazil. Regarding consumption, the United States consumes nearly 40% of the worldwide tantalum in the aerospace sector, whereas China, due to its large crude steel production, leads in global niobium consumption. In terms of supply-demand relationships, China's external dependency on niobium and tantalum resources is approximately 99% and 93%, respectively. As critical industrial raw materials for China’s future high-quality development, niobium and tantalum have diverse applications and broad prospects. The development of science and technology in China poses higher demands for the stable supply of the niobium-tantalum market, necessitating multifaceted promotion of the industrial chain development. Therefore, it is essential to strengthen geological exploration, formulate scientific development and utilization plans, promote industrial chain upgrades, enhance secondary resource recycling technology, and establish strategic reserve systems. These measures will improve resource development and utilization efficiency, stabilize market supply, promote industrial upgrading, and achieve sustainable development of the niobium and tantalum industry.
[1] | 艾永亮,范 光.2015.世界主要烧绿石资源及选矿技术特点[J]. 中国矿业,24(4):130-133+143. |
[2] | 曹 飞,杨卉芃,张 亮,王 威.2019.全球钽铌矿产资源开发利用现状及趋势[J]. 矿产保护与利用,39(5):56-67+89. |
[3] | 陈甲斌,霍文敏,冯丹丹,苏轶娜,胡德文.2022.我国矿产品供给形势分析——基于2021年基本态势[J]. 中国国土资源经济,35(5):42-48. |
[4] | 陈 唯.2015.碳酸岩铌矿床成矿作用[J]. 矿物学报,35(S1):276. |
[5] | 陈志东.2021.钽铌矿冶炼废渣的资源化利用[J]. 有色金属(冶炼部分),(11):122-127. |
[6] | 邓 攀,陈玉明,叶锦华,张伟波.2019.全球铌钽资源分布概况及产业发展形势分析[J]. 中国矿业,28(4):63-68. |
[7] | 董延涛,李天骄,陈秀法. 2024. 全球铌钽资源开发利用格局及对策建议[J/OL]. 自然资源情报. https://link.cnki.net/urlid/10.1798.N.20240513.1644.002. |
[8] | 高海州.2009a.白云鄂博矿区稀土稀有矿产资源综合评述(一)[J]. 包钢科技,35(5):1-6. |
[9] | 高海州.2009b.白云鄂博矿区稀土稀有矿产资源综合评述(二)[J]. 包钢科技,35(6):1-5. |
[10] | 李健康,李 鹏,王登红,李兴杰.2019.中国铌钽矿成矿规律[J]. 科学通报,64(15):1545-1566. |
[11] | 黎 洁,谢 贤,吕晋芳,康博文,李博琦,朱 辉.2021.铌矿资源概述及选矿技术研究进展[J]. 金属矿山,(2):120-126. |
[12] | 李志丹,李效广,崔玉荣,李国占,张 佳,郭 虎,刘文刚,张 超,俞礽安,谢 瑜,王佳营.2019.内蒙古赵井沟铌钽矿床燕山期成矿:来自LA-MC-ICP-MS独居石、锆石U-Pb和黑云母40Ar-39Ar年龄的证据[J]. 地球科学,44(1):234-247. |
[13] | 刘 爽,林 璠,鲁 力,黄 鹏,康 健,李 建.2014.湖北省某矿区含铌矿石选矿试验研究[J]. 矿产综合利用,(6):35-38. |
[14] | 欧 强. 2020. 中国铌资源需求趋势分析及供应风险研究[D]. 中国地质大学(北京)硕士学位论文. |
[15] | 潘 钢,易建春.2012.恒温电热板湿法消解-ICP-AES对地质样品中铌和钽的连续测定[J]. 光谱实验室,29(3):1597-1600. |
[16] | 邱啸飞,蔡应雄,江 拓,卢山松,彭练红,赵小明,彭三国,朱 江.2017.庙垭铌-稀土矿床的热液蚀变作用:来自碳酸岩碳-氧同位素的制约[J]. 华南地质与矿产,33(3):275-281. |
[17] | 宋 颜,董少春,胡 欢,王汝成.2023.基于大数据的铌钽矿物全球时空分布特征分析[J]. 地学前缘,30(5):197-204. |
[18] | 田 野,文 俊.2022.我国铌矿资源特征、勘查开发现状及展望[J]. 四川地质学报,42(S2):18-22. |
[19] | 谭东波,李东永,肖益林.2018.“孪生元素”铌-钽的地球化学特性和研究进展[J]. 地球科学,43(1):317-332. |
[20] | 王汝成,车旭东,邬 斌,谢 磊.2020.中国铌钽锆铪资源[J]. 科学通报,65(33):3763-3777. |
[21] | 王西荣,李绍侠,王 哲,余建军,秦月琴,吴海东.2016.莫桑比克穆塔拉地区铌钽矿地质特征及找矿方向的探讨[J]. 资源环境与工程,30(1):55-59+65. |
[22] | 王 修,李天骄,王安建,刘冲昊,范凤岩.2022.基于主要工业产品产量的我国钽资源需求预测[J]. 矿业研究与开发,42(6):191-196. |
[23] | 王 鑫,何东升,刘 爽,林 璠,翟月月.2020.铌钽矿选矿研究进展[J]. 现代矿业,36(4):98-101. |
[24] | 肖朝阳.2003.平江瑚珮伟晶岩型铌钽矿床地质特征及成因[J]. 华南地质与矿产,(2):63-67. |
[25] | 邢佳韵,陈其慎,龙 涛,任 鑫,崔博京,王良晨.2023.发达国家战略性矿产安全保障举措及启示[J]. 自然资源情报,(1):28-36. |
[26] | 邢晓琳. 2016. 烧绿石超族矿物化学成分变化研究——以烧绿石族、细晶石族矿物为例[D]. 中国地质大学(北京)硕士学位论文. |
[27] | 姚春彦,王天刚,倪 培,姚仲友,郭维民,朱意萍,王 威.2021.铌钽矿床类型、特征与研究进展[J]. 中国地质,48(6):1748-1758. |
[28] | 曾现来,Moisés Gómez,Mahmoud Bakry,耿 涌,李金惠.2024.“城市矿产”资源产生及其供给潜力:以金属铌为例[J]. 中国科学:地球科学,54(8):2625-2632. |
[29] | 张 琦,李智力,刘 爽,李 健,黄 鹏,何东升.2020.某低品位铌钽矿磁选试验研究[J]. 有色矿冶,36(6):22-26+40. |
[30] | 张 银. 2019. 中国铌资源需求预测及供应安全战略研究[D]. 中国地质大学(北京)硕士学位论文. |
[31] | 张 印,陈卫衡.2011.多孔钽棒置入治疗股骨头坏死的应用现状及展望[J]. 中国矫形外科杂志,19(16):1346-1348. |
[32] | 中国地质调查局. 2022. 美国政府公布新版50种关键矿产目录[EB/OL]. http://www.zhzx.cgs.gov.cn/xxfw02/dxkp/202204/t20220415_697353.html. |
[33] | 中华人民共和国国家发展和改革委员会. 2017. 全国矿产资源规划(2016—2020年)[EB/OL]. https://www.ndrc.gov.cn/fggz/fzzlgh/gjjzxgh/201705/t20170511 _1196755.html. |
[34] | 祝明明,邹建林,王 闯,冯 超,付宏林,赵 鹏,陈 阳,徐海军.2021.幕阜山地区断峰山铌钽矿的矿物学、年代学和赋存状态[J]. 地质科技通报,40(6):55-69. |
[35] | 自然资源部. 2019. 从战略高度谋划对策保障供应——世界主要国家对关键矿产的管理策略[EB/OL]. https://www.cgs.gov.cn/ddztt/jqthd/ddy/jyxc/201904/t20190401_478092.html. |
[36] | 自然资源部办公厅. 2023. 新一轮找矿突破战略行动“十四五”总体任务书[A]. |
[37] | 自然资源部中国地质调查局国际矿业研究中心. 2023. 全球矿业发展报告[M]. 北京:地质出版社. |
[38] | 左 更.2023a.我国稀缺性战略金属资源保供稳供问题的思考——以钽、铌、铬、钴为例[J]. 中国国土资源经济,36(9):4-13+23. |
[39] | 左 更.2023b.中国钽铌市场发展现状及未来展望[J]. 冶金经济与管理,(5):4-7. |
[40] | Linnen R L, Cuney M. 2005. Granite-related rare-element deposits and experimental onstraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In book: Linnen R L, Samson I M. 2005. Rare element geochemistry and mineral deposits[M]. Geological Association of Canada Short Course Notes. |
[41] | Linnen R, Trueman D L, Burt R. 2014. Chapter: 15, Tantalum and nibium. //Gunn G. 2014. Critical Metals Handbook[M]. England: British Geological Survey. |
[42] | Pell J. 1996. Chapter: 13, Mineral deposits associalted with carbonatites and related alkaline igneous rocks. //Mitchell R H. 1996. Undersaturated alkaline rocks: mineralogy, petrogenesis and economic potential[M]. Canada: Mineralogical Association of Canada. |
[43] | Rudnick R, Gao S. 2003. Chapter: 4, Composition of the continental crust. //Holland H D, Turekian K K. 2003. Treatise on Geochemistry (Second Edition)[M]. Netherlands: Elsevier. |
[44] | United States Geological Survey. 2020. Mineral commodity summaries 2020[R]. |
[45] | United States Geological Survey. 2021. Mineral commodity summaries 2021[R]. |
[46] | United States Geological Survey. 2022. Mineral commodity summaries 2022[R]. |
[47] | United States Geological Survey. 2023. Mineral commodity summaries 2023[R]. |
[48] | United States Geological Survey. 2024. Mineral commodity summaries 2024[R]. |
[49] | Wei X, Xia L G, Liu Z H, Zhang L R, Li Q H. 2023. A review of tantalum resources and its production[J]. Transactions of Nonferrous Metals Society of China, 33(10): 3132-3156. doi: 10.1016/S1003-6326(23)66323-X |
Global distribution of niobium resources in 2023
Global distribution of tantalum resources in 2023