Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 Vol. 44, No. 6
Article Contents

SHI Da, REN Xuemei, HAO Tingyu, ZHANG Run. Research Progress on the Utilization of Iron Tailings as Building Materials[J]. Conservation and Utilization of Mineral Resources, 2024, 44(6): 44-55. doi: 10.13779/j.cnki.issn1001-0076.2024.06.005
Citation: SHI Da, REN Xuemei, HAO Tingyu, ZHANG Run. Research Progress on the Utilization of Iron Tailings as Building Materials[J]. Conservation and Utilization of Mineral Resources, 2024, 44(6): 44-55. doi: 10.13779/j.cnki.issn1001-0076.2024.06.005

Research Progress on the Utilization of Iron Tailings as Building Materials

  • Iron tailings are the main solid waste produced in the process of iron ore development, and the utilization of iron tailings as building materials is one of the important directions for its large−scale consumption. Based on the physical and chemical characteristics of iron tailings, the research progress in the preparation of building materials from iron tailings at home and abroad is reviewed, including: (1) cement; (2) concrete, mainly as artificial coarse/fine aggregate, or as a cementing material after activation treatment; (3) brick materials, such as sintered brick, autoclaved brick, ceramic brick, permeable brick, and steam−free and burn−free brick; (4) wall materials, including concrete wall materials, new wall materials such as sound insulation materials and thermal insulation materials; (5) ceramic materials, such as porcelain tile, glass ceramics, and foamed ceramics; (6) road materials, including subgrade filling material, road base course, and subbase course. The major problems and future development trends of iron tailings in building materials applications are analyzed. Due to the characteristics of iron tailings, such as large particle size range, fine particle size in some parts, poor grading, poor activity, large performance fluctuation and large difference in properties of different iron tailings, there are some problems in the process of building materials utilization, such as small dosage, high treatment cost and poor product performance. According to the characteristics of iron tailings, an efficient and simple production process route is proposed. It is urgent to further reduce the production cost and improve the product value.

  • 加载中
  • [1] 路畅, 陈洪运, 傅梁杰, 等. 铁尾矿制备新型建筑材料的国内外进展[J]. 材料导报, 2021, 35(5): 5011−5026.

    Google Scholar

    LU C, CHEN H Y, FU L J, et al. Research progress on the preparation of new building materials using iron tailings[J]. Materials Reports, 2021, 35(5): 5011−5026.

    Google Scholar

    [2] 唐志东, 陈国岩, 曲孔辉, 等. 鞍钢东部尾矿工艺矿物学研究[J]. 金属矿山, 2018(6): 109−113.

    Google Scholar

    TANG Z D, CHEN G Y, QU K H, et al. Research on process mineralogy of eastern tailings in ANSTEEL[J]. Metal Mine, 2018(6): 109−113.

    Google Scholar

    [3] RICO M, BENITO G, SALGUEIRO A R, et al. Reported tailings dam failures: A review of the European incidents in the worldwide context[J]. Journal of Hazardous Materials, 2008, 152(2): 846−852. doi: 10.1016/j.jhazmat.2007.07.050

    CrossRef Google Scholar

    [4] LI J, WANG C Z, NI W, et al. Orthogonal test design for the optimization of preparation of steel slag−based carbonated building materials with ultramafic tailings as fine aggregates[J]. Minerals, 2022, 12(2): 246. doi: 10.3390/min12020246

    CrossRef Google Scholar

    [5] ZHAO J S, NI K, SU Y P, et al. An evaluation of iron ore tailings characteristics and iron ore tailings concrete properties[J]. Construction and Building Materials, 2021, 286: 122968. doi: 10.1016/j.conbuildmat.2021.122968

    CrossRef Google Scholar

    [6] CARRASCO E V M, MAGALHAES C, SANTOS W J D, et al. Characterization of mortars with iron ore tailings using destructive and nondestructive tests[J]. Construction and Building Materials, 2017, 131: 31−38. doi: 10.1016/j.conbuildmat.2016.11.065

    CrossRef Google Scholar

    [7] CONSOLI N C, VOGT J C, SILVA J P S, et al. Behaviour of compacted filtered iron ore tailings−portland cement blends: new brazilian trend for tailings disposal by stacking[J]. Applied Sciences, 2022, 12(2): 836. doi: 10.3390/app12020836

    CrossRef Google Scholar

    [8] UGAMA T, EJEH S, AMARTEY D. Effect of iron ore tailing on the properties of concrete[J]. Civil and Environmental Research, 2014, 6(10): 7−13.

    Google Scholar

    [9] SHETTIMA A U, HUSSIN M W, AHMAD Y, et al. Evaluation of iron ore tailings as replacement for fine aggregate in concrete[J]. Construction and Building Materials, 2016, 120: 72−79. doi: 10.1016/j.conbuildmat.2016.05.095

    CrossRef Google Scholar

    [10] 张天宇, 霍岩, 肖启飞, 等. 南芬选矿厂尾矿工艺矿物学研究[J]. 现代矿业, 2020, 36(8): 257−258.

    Google Scholar

    ZHANG T Y, HUO Y, XIAO Q F, et al. Study on process mineralogy research of tailings in Nanfen concentrator[J]. Modern Mining, 2020, 36(8): 257−258.

    Google Scholar

    [11] 毛奎, 蔡亮, 吴小文, 等. 几种典型铁尾矿制备加气混凝土性能及水化机理研究[J]. 硅酸盐通报, 2019, 38(12): 3719−3372.

    Google Scholar

    MAO K, CAI L, WU X W, et al. Hydration mechanism and properties of aerated concrete prepared by several typical iron tailings[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(12): 3719−3725.

    Google Scholar

    [12] WU S Z, ZHOU Y, GAO W, et al. Preparation and properties of shape−stable phase change material with enhanced thermal conductivity based on SiC porous ceramic carrier made of iron tailings[J]. Applied Energy, 2024, 355: 122256. doi: 10.1016/j.apenergy.2023.122256

    CrossRef Google Scholar

    [13] SUN B, GUO Z Y, REN F F, et al. Enhanced photocatalyst with TiO2−anchored iron tailings structure for highly efficient degradation of doxycycline hydrochloride[J]. Journal of Cleaner Production, 2023, 427: 139241. doi: 10.1016/j.jclepro.2023.139241

    CrossRef Google Scholar

    [14] 白润山, 闫彭亮, 张会芳, 等. 铁尾矿在混凝土中的应用研究进展[J]. 河北建筑工程学院学报, 2015, 33(4): 1−4.

    Google Scholar

    BAI M S, YAN P L, ZHANG H F, et al. Present status of applied studies on iron tailings in concrete[J]. Journal of Hebei Institute of Architecture and Civil Engineering, 2015, 33(4): 1−4.

    Google Scholar

    [15] 张作金, 周振华, 吴天来, 等. 河北某钒钛磁铁矿尾矿中回收铜实验研究[J]. 矿产综合利用, 2023(3): 27−30+37.

    Google Scholar

    ZHANG Z J, ZHOU Z H, WU T L, et al. Study on copper recovery from tailings of a vanadium titanomagnetite in Hebei[J]. Multipurpose Utilization of Mineral Resources, 2023(3): 27−30+37.

    Google Scholar

    [16] 秦玉芳, 李娜, 王其伟, 等. 白云鄂博选铁尾矿稀土的工艺矿物学研究[J]. 中国稀土学报, 2021, 39(5): 796−804.

    Google Scholar

    QIN Y F, LI N, WANG Q W, et al. Technological mineralogy of rare earth in Bayan Obo iron tailings[J]. Journal of the Chinese Society of Rare Earths, 2021, 39(5): 796−804.

    Google Scholar

    [17] 吴俊权, 马晶, 汪应玲, 等. 高硅铁尾矿制备陶粒工艺试验研究[J]. 矿产保护与利用, 2020, 40(6): 126−132.

    Google Scholar

    WU J Q, MA J, WANG Y L, et al. Experimental study on preparation of ceramsite with high silicon iron tailings[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 126−132.

    Google Scholar

    [18] 李富有, 何余良. 铁尾矿粉在道路工程中的应用研究[J]. 中外公路, 2022, 42(1): 233−239.

    Google Scholar

    WU J Q, MA J, WANG Y L, et al. Study on application of iron tailings powder in road engineering[J]. Journal of China & Foreign Highway, 2022, 42(1): 233−239.

    Google Scholar

    [19] GAYANA, BANGALORE, CHINNAPPA, et al. Experimental and statistical evaluations of strength properties of concrete with iron ore tailings as fine aggregate[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2020, 24(1): 1−14.

    Google Scholar

    [20] 王雅琳. 铁尾矿粉−矿渣粉复掺混凝土配合比优化研究[D]. 保定: 河北农业大学, 2022.

    Google Scholar

    WANG Y L. Optimization study of mixture ratio for concrete mixed with iron tailing powder−slag powder[D]. Baoding: Hebei Agricultural University, 2022.

    Google Scholar

    [21] 边伟, 王国安, 荣亚鹏, 等. 铁尾矿砂的静力学特性研究[J]. 山西交通科技, 2023(6): 29−32.

    Google Scholar

    BIAN W, WANG G A, RONG Y P, et al. Research on static properties of iron tailings sand[J]. Shanxi Science & Technology of Transportation, 2023(6): 29−32.

    Google Scholar

    [22] ZHANG S Q, ZHAO T, LI Y, et al. The effects and solidification characteristics of municipal solid waste incineration fly ash−slag−tailing based backfill blocks in underground mine condition[J]. Construction and Building Materials, 2024, 420: 135508. doi: 10.1016/j.conbuildmat.2024.135508

    CrossRef Google Scholar

    [23] 徐庆荣. 利用铁尾矿烧制硅酸盐水泥熟料[J]. 现代矿业, 2018, 34(5): 165−168.

    Google Scholar

    XU Q R. Calcining portland cement clinker with iron tailings[J]. Modern Mining, 2018, 34(5): 165−168.

    Google Scholar

    [24] 杨飞, 孙晓敏. 利用钒钛磁铁矿尾矿制备普通硅酸盐水泥熟料的研究[J]. 钢铁钒钛, 2020, 41(2): 75−81. doi: 10.7513/j.issn.1004-7638.2020.02.015

    CrossRef Google Scholar

    YANG F, SUN X M. Preparation of ordinary portland cement clinker from vanadium−titanium magnetite tailing[J]. Modern Mining, 2020, 41(2): 75−81. doi: 10.7513/j.issn.1004-7638.2020.02.015

    CrossRef Google Scholar

    [25] 尹琛, 白丽梅, 李绍英, 等. 铁尾矿综合利用研究进展[J]. 矿产保护与利用, 2023, 43(6): 41−53.

    Google Scholar

    YIN C, BAI L M, LI S Y, et al. Research progress of comprehensive utilization of iron tailings[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 41−53.

    Google Scholar

    [26] 吴瑞东. 石英岩型铁尾矿微粉及废石对水泥基材料的性能影响及机理[D]. 北京: 北京科技大学, 2020.

    Google Scholar

    WU R D. Performance and mechanism analysis of quartz−type iron tailings powder and waste rock in cement−based materials[D]. Beijing: University of Science and Technology Beijing, 2020.

    Google Scholar

    [27] LIU J H, WU R D, WU A X, et al. Bleeding characteristics and improving mechanism of self−flowing tailings filling slurry with low concentration[J]. Minerals, 2017, 7(8): 131. doi: 10.3390/min7080131

    CrossRef Google Scholar

    [28] 赵威, 曹宝月, 崔孝炜, 等. 铁尾矿基陶粒混凝土的制备及性能研究[J]. 矿产保护与利用, 2022, 42(6): 89−93.

    Google Scholar

    ZHAO W, CAO B Y, CUI X W, et al. Study on preparation and performance of iron tailings−based ceramsite concrete[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 89−93.

    Google Scholar

    [29] 李国峰, 那威, 田江涛, 等. 铁尾矿基陶粒的物理力学性能及其微观性质研究[J]. 金属矿山, 2022(10): 245−249.

    Google Scholar

    LI G F, NA W, TIAN J T, et al. Physical−mechanical properties and microcosmic properties of iron tailings−based ceramsite[J]. Metal Mine, 2022(10): 245−249.

    Google Scholar

    [30] YANG C M, CUI C, QIN J. Recycling of low−silicon iron tailings in the production of lightweight aggregates[J]. Ceramics International, 2015, 41(1): 1213−1221. doi: 10.1016/j.ceramint.2014.09.050

    CrossRef Google Scholar

    [31] 祁会军, 张慧爱, 段瑞斌. 聚苯颗粒陶粒超轻混凝土的试验研究[J]. 混凝土, 2023(9): 173−177+183. doi: 10.3969/j.issn.1002-3550.2023.09.035

    CrossRef Google Scholar

    QI H J, ZHANG H A, DUAN R B. Experimental study on polystyrene particle lytag super−light weight concrete[J]. Concrete, 2023(9): 173−177+183. doi: 10.3969/j.issn.1002-3550.2023.09.035

    CrossRef Google Scholar

    [32] 崔皓楠. 全固废免烧陶粒试验研究[D]. 北京: 北方工业大学, 2023.

    Google Scholar

    CUI H N. Experimental study on all solid waste unburned ceramsite[D]. Beijing: North China University of Technology, 2023.

    Google Scholar

    [33] 李杰. 细颗粒固废免烧陶粒及其透水混凝土的制备与性能研究[D]. 马鞍山: 安徽工业大学, 2021.

    Google Scholar

    LI J. Preparation and properties of non fired ceramicite of fine solidwaste and its permeable concrete[D]. Maanshan: Anhui University of Technology, 2021.

    Google Scholar

    [34] 童思意, 刘长淼, 刘玉林, 等. 我国固体废弃物制备陶粒的研究进展[J]. 矿产保护与利用, 2019, 39(3): 140−150.

    Google Scholar

    TONG S Y, LIU C Y, LIU Y L, et al. Research status of ceramsite prepared from solid waste in China[J]. Conservation and Utilization of Mineral Resources, 2019, 39(3): 140−150.

    Google Scholar

    [35] YAN R F, YIN S H, ZHANG H S, et al. Effect of superplasticizer on the setting behaviors and mechanical properties of tailings−waste rock cemented paste backfills[J]. Case Studies in Construction Materials, 2023, 18: 1714.

    Google Scholar

    [36] CHENG Y H, HUANG F, LI W C, et al. Test research on the effects of mechanochemically activated iron tailings on the compressive strength of concrete[J]. Construction and Building Materials, 2016, 118: 164−170. doi: 10.1016/j.conbuildmat.2016.05.020

    CrossRef Google Scholar

    [37] 张延年, 刘柏男, 顾晓薇, 等. 铁尾矿多元掺合料机械活化机理[J]. 沈阳工业大学学报, 2022, 44(1): 95−101.

    Google Scholar

    ZHANG Y N, LIU B N, GU X W, et al. Mechanical activation mechanism of multi−componentiron tailings admixture[J]. Journal of Shenyang University of Technology, 2022, 44(1): 95−101.

    Google Scholar

    [38] ZHANG M G, LI K Q, NI W, et al. Preparation of mine backfilling from steel slag−based non−clinker combined with ultra−fine tailing[J]. Construction and Building Materials, 2022, 320: 126248. doi: 10.1016/j.conbuildmat.2021.126248

    CrossRef Google Scholar

    [39] 程兴旺. 铁尾矿粉混凝土力学性能与耐久性分析[J]. 粉煤灰综合利用, 2018(5): 15−17+22.

    Google Scholar

    CHENG X W. Research on mechanical properties and durability of iron tailing powder concrete[J]. Fly Ash Comprehensive Utilization, 2018(5): 15−17+22.

    Google Scholar

    [40] 冯永存, 宋少民. 铁尾矿微粉复合矿物掺合料的试验研究[J]. 粉煤灰综合利用, 2015(1): 44−45+47.

    Google Scholar

    FENG Y C, SONG S M. Experimental study on iron tailings powder as concrete admixture[J]. Fly Ash Comprehensive Utilization, 2015(1): 44−45+47.

    Google Scholar

    [41] HU Z H, GU X W, CHENG B J, et al. The role of chemical activation in strengthening iron ore tailings supplementary cementitious materials[J]. Buildings, 2024, 14(4): 963. doi: 10.3390/buildings14040963

    CrossRef Google Scholar

    [42] YANG Y C, YANG Z L, CHENG Z X, et al. Effects of wet grinding combined with chemical activation on the activity of iron tailings powder[J]. Case Studies in Construction Materials, 2022, 17: e01385. DOI:10.1016/j.cscm.2022.e01385.

    Google Scholar

    [43] 施惠生, 吴敏. 土聚水泥的聚合反应与研究现状[J]. 材料导报, 2007, 21(8): 88−91.

    Google Scholar

    SHI H S, WU M. Geo−polymerization and research status of geopolymeric cement[J]. Materials Reports, 2007, 21(8): 88−91.

    Google Scholar

    [44] 易忠来, 孙恒虎, 李宇. 热活化对铁尾矿胶凝活性的影响[J]. 武汉理工大学学报, 2009, 31(12): 5−7+34. doi: 10.3963/j.issn.1671-4431.2009.12.002

    CrossRef Google Scholar

    YI Z L, SUN H H, LI Y. Research on the influence of thermal activation for the cementitious activity of iron ore tailing[J]. Journal of Wuhan University of Technology, 2009, 31(12): 5−7+34. doi: 10.3963/j.issn.1671-4431.2009.12.002

    CrossRef Google Scholar

    [45] 张延年, 孙厚启, 顾晓薇, 等. 铁尾矿基多固废矿物掺和料耦合活化机理分析[J]. 非金属矿, 2022, 45(3): 82−85.

    Google Scholar

    ZHANG Y N, SUN H Q, GU X W, et al. Coupling activation mechanism analysis of iron tailings based solid waste mineral admixture[J]. Non−Metallic Mines, 2022, 45(3): 82−85.

    Google Scholar

    [46] 王荣林, 席雅允, 冯建, 等. 改性铁尾矿微粉对中高强混凝土性能的影响研究[J]. 矿业研究与开发, 2023, 43(1): 32−37.

    Google Scholar

    WANG R L, XI Y Y, FENG J, et al. Influence of modified iron tailings powder on the properties of medium and high strength concrete[J]. Mining Research and Development, 2023, 43(1): 32−37.

    Google Scholar

    [47] 李晓, 夏禹, 王珏. 多维激发对富硅铁尾矿活化的耦合效应研究[J]. 新型建筑材料, 2022, 49(6): 1−5.

    Google Scholar

    LI X, XIA Y, WANG J, et al. Study on the coupling effect of multi−dimensional excitation on the activation of silicon−rich iron tailings[J]. New Building Materials, 2022, 49(6): 1−5.

    Google Scholar

    [48] YAO G, LIU Q, WANG J X, et al. Effect of mechanical grinding on pozzolanic activity and hydration properties of siliceous gold ore tailings[J]. Journal of Cleaner Production, 2019, 217: 12−21. doi: 10.1016/j.jclepro.2019.01.175

    CrossRef Google Scholar

    [49] 申艳军, 白志鹏, 郝建帅, 等. 尾矿制备混凝土研究进展与利用现状分析[J]. 硅酸盐通报, 2021, 40(3): 845−857.

    Google Scholar

    LI X, XIA Y, WANG J, et al. Research progress and utilization status analysis of concrete prepared by tailings[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(3): 845−857.

    Google Scholar

    [50] 崔孝炜, 邓惋心, 赵雨曦, 等. 利用铁尾矿作为混凝土掺和料的基础研究[J]. 非金属矿, 2020, 43(4): 88−91.

    Google Scholar

    CUI X W, DENG W X, ZHAO Y X, et al. Basic research on the preparation of mineral admixtures with iron ore tailings[J]. Non−Metallic Mines, 2020, 43(4): 88−91.

    Google Scholar

    [51] ZHANG X L, LIU P F, GAO P, et al. A clean and green technology for iron extraction from refractory siderite ore via fluidization self−magnetization roasting[J]. Powder Technology, 2024, 444: 119993. doi: 10.1016/j.powtec.2024.119993

    CrossRef Google Scholar

    [52] LI Z M, HAN Y X, SUN Y S, et al. Fluidization characteristics of ore particles for downstream hydrogen mineral phase transformation equipment[J]. Powder Technology, 2024, 443: 119993.

    Google Scholar

    [53] 王金忠. 铁尾矿部分代替粘土在烧结砖中的应用研究[J]. 房材与应用, 2000(3): 27−30.

    Google Scholar

    WANG J Z. Study on application of replacing clay partially with iron tailings in burnt brick[J]. Construction Conserves Energy, 2000(3): 27−30.

    Google Scholar

    [54] 王金忠, 李晖. 利用铁尾矿生产烧结砖的实验研究[J]. 辽宁建材, 2000(3): 21−23.

    Google Scholar

    WANG J Z. Experimental study on producing sintered brick from iron tailings[J]. LiaoNing Building Materials, 2000(3): 21−23.

    Google Scholar

    [55] 陈永亮. 鄂西低硅铁尾矿烧结制砖及机理研究[D]. 武汉: 武汉科技大学, 2012.

    Google Scholar

    CHEN Y L. Preparation and mechanism of fired bricks and tiles with low−silicon iron tailings from Western Hubei[D]. Wuhan: Wuhan University of Science and Technology, 2012.

    Google Scholar

    [56] 田玉梅. 利用铁矿尾矿制备烧结多孔砖技术研究[D]. 济南: 山东大学, 2004.

    Google Scholar

    TIAN Y M. Study on preparation of sintered porous brick from iron ore tailings[D]. Ji’nan: Shandong University, 2004.

    Google Scholar

    [57] 衣德强, 张剑锋. 铁矿尾矿烧结制砖可行性探讨[J]. 宝钢技术, 2008(6): 58−61.

    Google Scholar

    YI D Q, ZHANG J F. Discussion on the feasibility of iron ore tailings for sintering bricks[J]. Baosteel Technology, 2008(6): 58−61.

    Google Scholar

    [58] 朱华根, 衣德强. 铁矿尾矿烧结制砖试验研究[J]. 中国资源综合利用, 2008, 26(12): 19−21. doi: 10.3969/j.issn.1008-9500.2008.12.010

    CrossRef Google Scholar

    ZHU H G, YI D Q. Research on brick production by firing with iron ore tailings[J]. China Resources Comprehensive Utilization, 2008, 26(12): 19−21. doi: 10.3969/j.issn.1008-9500.2008.12.010

    CrossRef Google Scholar

    [59] 杜建发. 梅山选厂细粒级尾矿综合利用进展[J]. 金属矿山, 2008(6): 145−147+149. doi: 10.3321/j.issn:1001-1250.2008.06.039

    CrossRef Google Scholar

    DU J F, YI D Q. Progress in comprehensive utilization of Meishan concentrator's fine tailings[J]. Metal Mine, 2008(6): 145−147+149. doi: 10.3321/j.issn:1001-1250.2008.06.039

    CrossRef Google Scholar

    [60] 周怡笛, 王丽娟, 闵鑫, 等. 铁尾矿高值化利用研究进展[J]. 现代矿业, 2022, 38(10): 251−254.

    Google Scholar

    ZHOU Y D, WANG L J, MIN X, et al. Research progress on the high−value utilization of iron tailings[J]. Modern Mining, 2022, 38(10): 251−254.

    Google Scholar

    [61] 张立侠, 胡晨光, 宋裕增, 等. 利用铁尾矿粉制备保温砌块的研究[J]. 建设科技, 2016(3): 80−81.

    Google Scholar

    ZHANG L X, HU C G, SONG Y Z, et al. Study on preparation of thermal insulation block from iron tailings powder[J]. Construction Science and Technology, 2016(3): 80−81.

    Google Scholar

    [62] 王长龙, 荆牮霖, 齐洋, 等. 钒钛铁尾矿制备硅酸钙隔声板材及其性能研究[J]. 钢铁钒钛, 2023, 44(3): 105−113.

    Google Scholar

    WANG C L, JING J L, QI Y, et al. Preparation and properties of calcium silicate sound insulation boardfrom vanadium−titanium iron ore tailings[J]. Iron Steel Vanadium Titanium, 2023, 44(3): 105−113.

    Google Scholar

    [63] 王鹏昕. 微纳铁尾矿砂/SiO2气凝胶保温隔热建筑新材料的制备及其参数影响规律[D]. 南昌: 南昌航空大学, 2020.

    Google Scholar

    WANG P X. Preparation of new material for micro−nano iron tailing sand/SiO2 aerogel thermal insulation building and laws of parameter influence[D]. Nanchang: Nanchang Hangkong University, 2020.

    Google Scholar

    [64] 喻杰, 柯昌云, 喻振贤, 等. 大比例掺用铁尾矿制备轻质保温墙体材料[J]. 金属矿山, 2013, 43(3): 161−164.

    Google Scholar

    YU J, KE C Y, YU Z X, et al. Preparation of lightweight thermal insulation walling material with high content of iron tailings[J]. Construction Science and Technology, 2013, 43(3): 161−164.

    Google Scholar

    [65] 隋延力, 王继全, 杨芳, 等. 铁尾矿生产陶瓷玻化砖离工业化还有多远[J]. 金属世界, 2014(1): 9−13.

    Google Scholar

    SUI Y L, WANG J Q, YANG F, et al. How far is it from iron ore tailings to the industrialized production of ceramic tiles[J]. Metal World, 2014(1): 9−13.

    Google Scholar

    [66] 焦娟, 郭志猛, 刘祥庆, 等. 用程潮铁尾矿制备黑色通体砖[J]. 金属矿山, 2010(12): 167−170+174.

    Google Scholar

    JIAO J, GUO Z M, LIU X Q, et al. Preparation of black full−body brick with Chengchao iron tailings[J]. Metal Mine, 2010(12): 167−170+174.

    Google Scholar

    [67] 石棋, 崔文豪, 隋延力. 利用攀钢铁尾矿制备黑色玻化砖的研究[J]. 中国陶瓷, 2012, 48(10): 55−57.

    Google Scholar

    SHI Q, CUI W H, SUI Y L, et al. Study on preparation of black vitrified brick from Panzhihua iron and steel tailings[J]. China Ceramics, 2012, 48(10): 55−57.

    Google Scholar

    [68] 薛路, 成兆鑫, 赵勇. 基于铁尾矿的微晶玻璃的制备[J]. 现代矿业, 2016, 32(8): 289−290.

    Google Scholar

    XUE L, CHENG Z X, ZHAO Y, et al. Preparation of glass−ceramics based on iron tailings[J]. Modern Mining, 2016, 32(8): 289−290.

    Google Scholar

    [69] ZHANG H J, ZHAO W G, LI F L, et al. Preparation and erosion resistance of CaO−Al2O3−MgO−SiO2 microcrystalline glass ceramics[J]. Rare Metal Materials and Engineering, 2016, 44: 277−280.

    Google Scholar

    [70] LU X W, ZHOU C, LIU Y X, et al. Crystallization characteristics and properties of glass ceramics derived from iron tailing[J]. Journal of Sustainable Metallurgy, 2022, 8(3): 1117−1129. doi: 10.1007/s40831-022-00553-5

    CrossRef Google Scholar

    [71] 杨博宇, 张雪峰. 微波加热法制备尾矿微晶玻璃的研究[J]. 中国陶瓷, 2018, 54(2): 63−67.

    Google Scholar

    YANG B Y, ZHANG X F. Preparation of tailing glass−ceramics by microwave heating treatment[J]. China Ceramics, 2018, 54(2): 63−67.

    Google Scholar

    [72] 南宁, 崔孝炜, 孙强强, 等. 铁尾矿制备微晶玻璃的研究[J]. 矿产综合利用, 2022(3): 47−50. doi: 10.3969/j.issn.1000-6532.2022.03.009

    CrossRef Google Scholar

    NAN N, CUI X W, SUN Q Q, et al. Investigation on preparation of glass−ceramics with iron tailings[J]. Multipurpose Utilization of Mineral Resources, 2022(3): 47−50. doi: 10.3969/j.issn.1000-6532.2022.03.009

    CrossRef Google Scholar

    [73] CHEN S Z, LUO L M, SUN H J, et al. Effect and mechanism of Fe2O3 decomposition in the preparation of foaming ceramics from industrial solid waste[J]. International Journal of Applied Ceramic Technology, 2024, 21(2): 934−946. doi: 10.1111/ijac.14587

    CrossRef Google Scholar

    [74] 李林, 姜涛, 陈超, 等. 攀西钒钛磁铁矿尾矿制备储水泡沫陶瓷的研究[J]. 矿产综合利用, 2020(6): 7−13+6. doi: 10.3969/j.issn.1000-6532.2020.06.002

    CrossRef Google Scholar

    LI L, JIANG T, CHEN C, et al. Study on preparation of water−retaining foam ceramics from vanadium−titanium magnetite tailings[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 7−13+6. doi: 10.3969/j.issn.1000-6532.2020.06.002

    CrossRef Google Scholar

    [75] 姜葱葱, 董祎然, 黄世峰, 等. 基于原位发泡工艺的固废基发泡陶瓷研究进展[J]. 硅酸盐学报, 2022, 50(9): 2510−2526.

    Google Scholar

    JIANG C C, DONG Y R, HUANG S F, et al. Research progress on solid waste−based foamed ceramics based on in−situ foaming process[J]. Journal of the Chinese Ceramic Society, 2022, 50(9): 2510−2526.

    Google Scholar

    [76] DENG F Q, WANG F, SHI X P, et al. Synthesis and properties of foam glass−ceramics from granite tailings by using SiC and MnO2 as the mixed foaming agent[J]. Ceramics International, 2023, 49(22): 34647−34656. doi: 10.1016/j.ceramint.2023.08.120

    CrossRef Google Scholar

    [77] 王晶. 铁尾矿在国内外道路工程中的应用[J]. 环境与发展, 2014, 26(7): 51−55+100. doi: 10.3969/j.issn.1007-0370.2014.07.016

    CrossRef Google Scholar

    WANG J. The application of iron tailings in road construction in China and abroad[J]. Environment and Development, 2014, 26(7): 51−55+100. doi: 10.3969/j.issn.1007-0370.2014.07.016

    CrossRef Google Scholar

    [78] 赵宇翔, 张茜, 刘碧雯, 等. 尾矿制备建筑材料的研究进展[J]. 中国资源综合利用, 2021, 39(9): 120−124. doi: 10.3969/j.issn.1008-9500.2021.09.037

    CrossRef Google Scholar

    ZHAO Y X, ZHANG Q, LIU B W, et al. Progress of research on building materials prepared from tailings[J]. China Resources Comprehensive Utilization, 2021, 39(9): 120−124. doi: 10.3969/j.issn.1008-9500.2021.09.037

    CrossRef Google Scholar

    [79] 易龙生, 李行, 齐莉娜, 等. 铁尾矿用于路面基层材料的研究进展及前景[J]. 矿业研究与开发, 2015, 35(10): 27−32.

    Google Scholar

    YI L S, LI X, QI L N, et al. Research progress and application prospect of iron tailings for pavement base material[J]. Mining Research and Development, 2015, 35(10): 27−32.

    Google Scholar

    [80] 杨青. 无机结合料稳定铁尾矿砂的路用性能研究[D]. 大连:大连理工大学,2008.

    Google Scholar

    YANG Q. Study on road performance of iron tailings stabilized by inorganic binder[D]. Dalian: Dalian University of Technology, 2008.

    Google Scholar

    [81] 郭晓华. 尾矿砂在道路工程中的应用前景[J]. 公路交通科技(应用技术版), 2011, 7(5): 99−101.

    Google Scholar

    GUO X H. Application prospect of tailings in road engineering[J]. Highway Traffic Technology, 2011, 7(5): 99−101.

    Google Scholar

    [82] 苏更. 铁矿尾矿料在公路工程中的应用[J]. 内蒙古公路与运输, 2007(1): 29−32. doi: 10.3969/j.issn.1005-0574.2007.01.008

    CrossRef Google Scholar

    SU G. Application of iron−ore tailing to highway engineering[J]. Highways & Transportation in Inner Mongolia, 2007(1): 29−32. doi: 10.3969/j.issn.1005-0574.2007.01.008

    CrossRef Google Scholar

    [83] 孙吉书, 陈朝霞, 肖田, 等. 石灰粉煤灰稳定铁尾矿碎石的路用性能研究[J]. 武汉理工大学学报, 2012, 34(3): 59−62. doi: 10.3963/j.issn.1671-4431.2012.03.014

    CrossRef Google Scholar

    SUN J S, CHEN Z X, XIAO T, et al. Research on the performances of lime fly ash stabilized iron tailing gravel in highway application[J]. Journal of Wuhan University of Technology, 2012, 34(3): 59−62. doi: 10.3963/j.issn.1671-4431.2012.03.014

    CrossRef Google Scholar

    [84] 万磊. 铁尾矿用作路面基层材料的研究[D]. 长沙: 中南大学, 2014.

    Google Scholar

    WAN L. The apply of iron tailings as subgrade materials[D]. Changsha: Central South University, 2014.

    Google Scholar

    [85] 王一峰. 固化剂改良铁尾矿路用性能研究[D]. 张家口: 河北建筑工程学院, 2019.

    Google Scholar

    WAN Y F. Road performance study of curingagent stabilized iron tailing[D]. Zhangjiakou: Hebei University of Architecture, 2019.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(2)

Article Metrics

Article views(281) PDF downloads(17) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint