Citation: | CHENG Jinxiang, DENG Min, YANG Guilai, YU Qian. 2024. Analysis of geochemical characteristics, provenance, and tectonic background of black shale in the Silurian Longmaxi Formation of the Mingsheng section in the Yanyuan area, Sichuan Province. Sedimentary Geology and Tethyan Geology, 44(4): 840-853. doi: 10.19826/j.cnki.1009-3850.2023.12003 |
The graptolitic shales of the Longmaxi Formation were widely deposited during the Silurian transition in the Yanyuan area. This study selected fresh outcrops of the Silurian Longmaxi Formation at the Mingsheng section in the Yanyuan area, systematically sampled them, and analyzed the vertical variation characteristics of major, trace, and rare earth elements in the section. Moreover, this study discussed the perspective of geochemical characteristics, provenance characteristics, and tectonic environment of that period. Research results show that the Longmaxi Formation at the Mingsheng section in the Yanyuan area is predominantly siliciclastic shale facies (sections L1, L3, and L4), with higher carbonate mineral content in sections L2 and L5, and brittle minerals such as quartz and feldspar are less abundant in sections L2 and L5, while clay minerals show a significant increasing trend from bottom to top. The sediments of the Longmaxi Formation at the Mingsheng section have a dual source of mafic and felsic materials: sections L3 and L4 are of mafic or ultramafic provenance, while sections L1, L2, and L5 are more felsic or a mixture of felsic and mafic sources. The tectonic background of the source rock formation is continental margin, and the sediments exhibit dual characteristics of both active and passive continental margins. The variation in provenance indicates that the composition of the Kangdian paleocontinent was complex in the Early Silurian.
[1] | Armstrong-Altrin J S,Lee Y I,Verma S P,et al.,2004. Geochemistry of sandstones from the upper Miocene Kudankulam Formation,southern India:Implications for provenance,weathering,and tectonic setting[J]. Sed. Res.,74:285 − 297. doi: 10.1306/082803740285 |
[2] | Bhatia M R,1983. Plate tectonics and geochemical composition of sandstones[J]. Journal of Geology,91(4):611 − 627. |
[3] | Bhatia M R,Crook K A W,1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy & Petrology,92(2):181 − 193. |
[4] | 柏道远,周亮,王先辉,等,2007. 湘东南南华系−寒武系砂岩地球化学特征及对华南新元古代—早古生代构造背景的制约[J]. 地质学报,81(6):755 − 771. doi: 10.3321/j.issn:0001-5717.2007.06.004 Bai D Y,Zhou L,Wang X H,et al.,2007. Geochemistry of Nanhuan–Cambrian sandstones in southeastern Hunan,and its constraints on Neoproterozoic–Early Paleozoic tectonic setting of south China[J]. Acta Geologica Sinica,81(6):755 − 771 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2007.06.004 |
[5] | Bracciali L,Marroni M,Luca P,et al.,2007. Geochemistry and petrography of western Tethys Cretaceous sedimentary covers (Corsica and Northern Apennines):From source areas to configuration of margins[M]. Geological Society of America. |
[6] | Campos-Alvarez N O,Roser B P,2007. Geochemistry of black shales from the Lower Cretaceous Paja Formation, Eastern Cordillera, Colombia: source weathering, provenance, and tectonic setting[J]. South Am. Earth Sci.,23:271 − 289. doi: 10.1016/j.jsames.2007.02.003 |
[7] | 程锦翔,邓敏,王正和,2022. 康滇古陆西侧早志留世古海洋氧化−还原环境及优质烃源岩发育模式——以盐源地区CYD2井为例[J]. 地质通报, 41(10):1813 − 1828. Cheng J X,Deng M,Wang Z H,et al.,2022. Paleo-marine redox conditions and development model of high-quality source rocks of the Early Silurian on the West side of Kangdian Oldland:A case study of CYD2 well in Yanyuan area[J]. Geological Bulletin of China, 41(10):1813 − 1828 (in Chinese with English abstract). |
[8] | Cox R,Lowe D R,1995. Cullers R L,The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochim. Cosmochim. Acta,59(14):2919 − 2940. doi: 10.1016/0016-7037(95)00185-9 |
[9] | Cullers R L,1995. The controls on the major-element and trace-element evolution of shales,siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountains Region,Colorado,USA[J]. Chem. Geol.,123:107 − 131. |
[10] | Cullers R L,2000. The geochemistry of shales,siltstones and sandstones of Pennsylvanian-Permian age,Colorado,U. S. A. :implications for provenance and metamorphic studies[J]. Lithos,51:181 − 203. |
[11] | 邓奇,崔晓庄,汪正江,等,2023. 扬子陆块北缘构造演化新认识:来自原花山群年代学和地球化学的制约[J]. 沉积与特提斯地质,43(1):212 − 225. doi: 10.3969/j.issn.1009-3850.2023.01.016 Deng Q,Cui X Z,Wang Z J,et al.,2023. New understanding of the tectonic evolution of the northern margin of Yangtze Block:Constraints from the geochronology and geochemistry of the Huashan Group[J]. Sedimentary Geology and Tethyan Geology,43(1):212 − 225 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2023.01.016 |
[12] | 杜利林,郭敬辉,耿元生,等,2013. 扬子西南缘盐边群时代及构造环境:来自碎屑沉积岩的约束[J]. 岩石学报, 29(2):641 − 672. Du L L,Guo J H,Geng Y S,et al.,2013. Age and tectonic setting of the Yanbian Group in the southwestern Yangtze Block:Constraints from clastic sedimentary rocks.[J]. Acta Petrologica Sinica, 29(2):641 − 672 (in Chinese with English abstract). |
[13] | Dulski P,1994. Interferences of oxide,hydroxide and chloride analyte species in the determination of rare earth elements in geological samples by inductively coupled plasma-mass spectrometry[J]. Analytical and Bioanalytical Chemistry,350:194 − 203. |
[14] | Eynatten H V,Tolosana-Delgado R,Karius V,et al.,2016. Sediment generation in humid Mediterranean setting:Grain-size and source-rock control on sediment geochemistry and mineralogy (Sila Massif,Calabria)[J]. Sedimentary Geology,336:68 − 80. doi: 10.1016/j.sedgeo.2015.10.008 |
[15] | Gaillardet J,Dupré B,Allègre C J,1999. Geochemistry of large river suspended sediments:Silicate weathering or recycling tracer?[J]. Geochimica et Cosmochimica Acta,63:4037 − 4051. doi: 10.1016/S0016-7037(99)00307-5 |
[16] | Garcia D,Coelho J,Perrin M,1991. Fractionation between TiO2 and Zr as a measure of sorting within shale and sandstone series (Northern Portugal)[J]. European Journal of Mineralogy,3(2):401 − 414. doi: 10.1127/ejm/3/2/0401 |
[17] | Garcia D,Fonteilles M and Moutte,et al.,1994. Sedimentary fractionations between Al,Ti,and Zr and the genesis of strongly peraluminous granites[J]. Geol.,102:411 − 422. |
[18] | Hassan S,Ishiga H,Roser B P,et al.,1999. Geochemistry of Permian–Triassic shales in the Salt Range,Pakistan:implications for provenance and tectonism at the Gondwana margin[J]. Chemical Geology,158(3):293 − 314. |
[19] | Hayashi K I,Fujisawa H,Holland,et al.,1997. Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador[J]. Geochimica et Cosmochimica Acta,61:4115 − 4137. |
[20] | Holland,H,1978. The geochemistry of atmosphere and oceans[M].New York: John Wiley & Sons . |
[21] | 金秉福,林振宏,季福武,2003. 海洋沉积环境和物源的元素地球化学记录释读[J]. 海洋科学进展,21(1):99 − 106. doi: 10.3969/j.issn.1671-6647.2003.01.013 Jin B F,Lin Z H,Ji F W,2003. Interpretation of element geochemical records of marine sedimentary environment and provenance[J]. Advances in Marine Science,21(1):99 − 106 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-6647.2003.01.013 |
[22] | 金淳泰,1982. 西南地区地层总结志留系[R]. 成都:地质部成都地质矿产研究:53 − 70. Jin C T,1982. Summary of the stratigraphy of the southwestern region china (Silurian) [R]. Chengdu:Chengdu Geology and Mineral Research Center,Ministry of Geology and Mineral Resources:53 − 70 (in Chinese with English abstract). |
[23] | Kurtz A C,Derry L A,Chadwick O A,et al.,2000. Refractory element mobility in volcanic soils[J]. Geology,28:683 − 686. |
[24] | Lee Y I,2009. Geochemistry of shales of the Upper Cretaceous Hayang Group,SE Korea:Implications for provenance and source weathering at an active continental margin[J]. Sed. Geol.,215:1 − 12. doi: 10.1016/j.sedgeo.2008.12.004 |
[25] | Liu Y J,1984. Elemental geochemistry[M]. Beijing:China Science Publishing & Media Ltd.:6 − 40. |
[26] | 骆耀南,1983. 康滇构造带的古板块历史演化[J]. 四川地质学报, 22(3):93 − 102. Luo Y N,1983. The evolution of paleoplates in the Kang-Dian tectonic zone[J]. Acta Geologica Sichuan, 22(3):93 − 102 (in Chinese with English abstract). |
[27] | 骆耀南, 1983. 康滇构造带的古板块历史演化[J]. 四川地质学报, 22(3): 93 − 102. Madhavaraju J,C M González-León,Lee Y I,et al.,2010. Geochemistry of the mural formation (Aptian-Albian) of the bisbee group,northern Sonora,Mexico[J]. Cre. Res.,31:400 − 414. |
[28] | McLennan S M,1989. Rare earth elements in sedimentary rocks:Influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry,21(1):169 − 200. doi: 10.1016/j.cretres.2010.05.006 |
[29] | McLennan S M,2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry,Geophysics,Geosystems, 2:10 − 21. |
[30] | McLennan S M,Hemming S R,McDaniel D K,et al.,1993. Geochemical approaches to sedimentation,provenance,and tectonics[M]. Geological Society of America. |
[31] | 宁括步,邓奇,崔晓庄,等,2024. 扬子陆块北缘大洪山地区莲沱组底部凝灰岩锆石U-Pb定年及其地层学意义[J]. 地质通报, 43(2/3):363 − 375. Ning K B,Deng Q,Cui X Z,et al.,2024. Zircon U-Pb age and stratigraphic significance of the tuff from the lowermost Liantuo Formation in the Dahongshan area of the northern Yangtze Block[J]. Geological Bulletin of China, 43(2/3):363 − 375 (in Chinese with English abstract). |
[32] | 宁括步, 邓奇, 崔晓庄, 等, 2024. 扬子陆块北缘大洪山地区莲沱组底部凝灰岩锆石U-Pb定年及其地层学意义[J]. 地质通报, 43(2/3): 363 − 375. Nothdurft L D,Webb G E,Kamber B S,2004. Rare earth element geochemistry of Late Devonian reefal carbonates,Canning Basin,western Australia:Confirmation of a seawater REE proxy in ancient limestones[J]. Geochimica et Cosmochimica Acta,68(2):263 − 283. |
[33] | 潘世乐,蒋赟,康健,等,2021. 柴北缘冷湖七号下干柴沟组上段古气候及物源分析[J]. 沉积学报, 39(5):1292 − 1304. doi: 10.1016/S0016-7037(03)00422-8 Pan S L,Jiang Y,Kang J,et al.,2021. Analysis of paleoclimate and source of the upper section,Lower Ganchaigou Formation,Lenghu No. 7 Region,north Qaidam Basin[J]. Acta Sedimentologica Sinica, 39(5):1292 − 1304 (in Chinese with English abstract). doi: 10.1016/S0016-7037(03)00422-8 |
[34] | 潘世乐, 蒋赟, 康健, 等, 2021. 柴北缘冷湖七号下干柴沟组上段古气候及物源分析[J]. 沉积学报, 39(5): 1292 − 1304. Raza M,Ahmad A H M,et al.,2012. Geochemistry and detrital modes of Proterozoic sedimentary rocks,Bayana Basin,north Delhi fold belt:Implications for provenance and source-area weathering[J]. International Geology Review, 54(1):111 − 129. |
[35] | Roser B P,Korsch R J,1986. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio[J]. Journal of Geology,94(5):635 − 650. |
[36] | Sawant S S,Kumar K V,Balaram V,et al.,2017. Geochemistry and genesis of craton-derived sediments from active continental margins:Insights from the Mizoram Foreland Basin,NE India[J]. Chemical Geology:13 − 32. doi: 10.1086/629071 |
[37] | Sun Y,Wu F,Clemens S C,et al.,2008. Processes controlling the geochemical composition of the South China Sea sediments during the last climatic cycle[J]. Chemical Geology, 257(3-4):240 − 246. |
[38] | 唐若龙,1987. 木里−盐源推覆构造特征与金铜、铅锌的成矿关系[J]. 四川地质学报,7(2):5 − 11. Tang R L,1987. Tectonic features of the Muli-Yanyuan thrust and the metallogenic relationship between gold,copper and lead-zinc[J]. Acta Geologica Sichuan,7(2):5 − 11 (in Chinese with English abstract). |
[39] | 唐若龙, 1987. 木里−盐源推覆构造特征与金铜、铅锌的成矿关系[J]. 四川地质学报, 7(2): 5 − 11. Tawfik H A,Ghandour I M,Wataru M,et al.,2015. Petrography and geochemistry of the siliciclastic Araba Formation (Cambrian),east Sinai,Egypt:Implications for provenance,tectonic setting and source weathering[J]. Geological Magazine,154(1):1 − 23. |
[40] | Taylor S R,McLennan S M,1985. The continental crust:Its composition and evolution[M]. Oxford:Blackwell. |
[41] | Taylor S R,McLennan S M,1985. The continental crust: Its composition and evolution. An examination of the geochemical record preserved in sedimentary rocks[J]. Blackwell Scientific Pub,42:196 − 197. |
[42] | Totten M W,Hanan M A,Weaver B L,2000. Beyond whole-rock geochemistry of shales:The importance of assessing mineralogic controls for revealing tectonic discriminants of multiple sediment sources for the Ouachita Mountain flysch deposits[J]. Geological Society of America Bulletin,112(7):1012 − 1022. |
[43] | 王正和,张海全,程锦翔,等,2020. 康滇古陆西侧志留系龙马溪组红−黑转换特征—以宁蒗大槽子剖面为例[J]. 海相油气地质,25(2):97 − 107. doi: 10.1130/0016-7606(2000)112<1012:BWGOST>2.0.CO;2 Wang Z H,Zhang H Q,Cheng J X,et al.,2020. Red-black transitional characteristics of the Silurian Longmaxi Formation in the west of the Kangdian Ancient Land:taking Dacaozi outcrop of Ninglang as an example[J]. Marine Origin Petroleum Geology,25(2):97 − 107 (in Chinese with English abstract). doi: 10.1130/0016-7606(2000)112<1012:BWGOST>2.0.CO;2 |
[44] | 王志峰,张元福,梁雪莉,等,2014. 四川盆地五峰组—龙马溪组不同水动力成因页岩岩相特征[J]. 石油学报,35(4):623 − 632. doi: 10.3969/j.issn.1672-9854.2020.02.001 Wang Z F,Zhang Y F,Liang X L,et al.,2014. Characteristics of shale lithofacies formed under different hydrodynamic conditions in the Wufeng-Longmaxi Formation,Sichuan Basin[J]. Acta Petrolei Sinica,35(4):623 − 632 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2020.02.001 |
[45] | 吴蓝宇,胡东风,陆永潮,等,2016. 四川盆地涪陵气田五峰组—龙马溪组页岩优势岩相[J]. 石油勘探与开发, 43(2):189 − 197. doi: 10.7623/syxb201404002 Wu L Y,Hu D F,Lu Y C,et al.,2016. Advantageous shale lithofacies of Wufeng Formation-Longmaxi Formation in Fuling gas field of Sichuan Basin,SW China[J]. Petroleum Exploration and Development, 43(2):189 − 197 (in Chinese with English abstract). doi: 10.7623/syxb201404002 |
[46] | 吴蓝宇, 胡东风, 陆永潮, 等, 2016. 四川盆地涪陵气田五峰组—龙马溪组页岩优势岩相[J]. 石油勘探与开发, 43(2): 189 − 197. Weaver C E,1989. Clays, Muds, and Shales: Development in Sedimentology[M]. Amsterdam: Elsevier, 1-210 |
[47] | Wei G J,Liu Y,Li X,et al.,2008. Climatic impact on Al,K,Sc and Ti in marine sediments:Evidence from ODP Site 1144,South China Sea[J]. Geochemical Journal, 37(5):593 − 602. |
[48] | 谢窦克,1959. 康滇地轴的地质构造史[J]. 地质学报,39(2):101 − 116. Xie D K,1959. On the tectonic history of the Kam-Yunnan Axis[J]. Acta Geologica Sinica,39(2):101 − 116 (in Chinese with English abstract). |
[49] | 熊国庆,刘春来,董国明,等,2021. 南大巴山上奥陶统五峰组—下志留统龙马溪组泥岩元素地球化学特征[J]. 沉积与特提斯地质, 41(3):398 − 417. Xiong G Q,Liu C L,Dong G M,et al.,2021. A study of element geochemistry of mudstones of upper Ordovician Wufeng Formation and lower Silurian Longmaxi Formation in southern Daba Mountain[J]. Sedimentary Geology and Tethyan Geology, 41(3):398 − 417 (in Chinese with English abstract). |
[50] | 曾忻耕,1991. 康滇地轴西缘的矿产与成矿条件[J]. 四川地质学报,11(4):269 − 275. Zeng X G,1991. Minerals and mineralization conditions along the western edge of the Kangdian geosyncline[J]. Acta Geologica Sichuan,11(4):269 − 275 (in Chinese with English abstract). |
[51] | 张茜,王剑,余谦,等,2017. 康滇古陆西侧龙马溪组黑色页岩地球化学特征及其地质意义[J]. 沉积与特提斯地质,37(1):97 − 107. Zhang Q,Wang J,Yu Q,et al.,2017. Black shales from the Longmaxi Formation in western Xikang-Yunnan ancient land:Geochemistry and geological implications[J]. Sedimentary Geology and Tethyan Geology,37(1):97 − 107 (in Chinese with English abstract). |
[52] | 钟康惠,刘肇昌,施央,等,2004. 盐源−丽江构造带是新生代陆内造山带[J]. 地质学报, 78(1):36 − 43. doi: 10.3969/j.issn.1009-3850.2017.01.013 Zhong K H,Liu Z C,Shi Y,et al.,2004. Yanyuan-Lijiang tectonic zone:A Cenozoic intracontinental orogenic belt[J]. Acta Geologica Sinica, 78(1):36 − 43 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2017.01.013 |
[53] | 刘英俊,1984. 元素地球化学[M]. 北京:科学出版社:6 − 40. Zhong K H, Liu Z C, Shi Y, et al., 2004. Yanyuan-Lijiang tectonic zone: A Cenozoic intracontinental orogenic belt[J]. Acta Geologica Sinica, 78(1): 36 − 43. |
Geological sketch map of the Yanyuan area (a), and stratigraphic column of the Mingsheng section (b)
Characteristics of the Silurian Longmaxi Formation in the Mingsheng section
Ternary diagram showing the mineralogy compositions of the Silurian Longmaxi Formation in the Mingsheng section
Vertical distribution of geochemical proxies of the Silurian Longmaxi Formation in the Mingsheng section
Diagrams showing the correlation for the contents of SiO2, CaO, and Al2O3 of the Silurian Longmaxi Formation in the Mingsheng section
PAAS-normalized spider diagrams for trace elements of the Silurian Longmaxi Formation in the Mingsheng section
Chondrite–normalized REE patterns of the Silurian Longmaxi Formation in the Mingsheng section
Th/Sc–Zr/Sc ratio plot (a) and Al2O3(×15)–Zr–TiO2(×300) diagram (b) of the Silurian Longmaxi Formation in the Mingsheng section
Ternary Rb/V–Sc/Nb–Zr/Zn (a) and Rb/V–Eu/Eu*–Zr/Zn (b) provenance discrimination diagrams of the Silurian Longmaxi Formation in the Mingsheng section
Ternary V–Ni–Th(×10) (a) and V–Ni–La(×4) (b) provenance discrimination diagrams of the Silurian Longmaxi Formation in the Mingsheng section
Th/Co–Zr/Co plot (a) and Th–Sc plot (b) showing provenance characteristics
Discrimination diagrams of major and trace elements for tectonic setting of the Longmaxi Formation in the Mingsheng section