Citation: | HUA Jun, CAI Yitao, LIAN Xiang, QIAN Lingyu, CAI Weidong, TANG Bolang, SUN Zhengxiang. 2024. Study on quality assessment of clay mineral based on TIMA. East China Geology, 45(4): 488-497. doi: 10.16788/j.hddz.32-1865/P.2023.08.006 |
Clay minerals are the raw materials for making Zisha (purple clay) crafts. Currently, the conventional methods used in the industry to determine the quality of clay minerals primarily include major element analysis, mineral composition and plasticity, loss on ignition, shrinkage rate, and water absorption rate. Although these conventional tests effectively evaluate the quality of clay minerals, they struggle to distinguish between siltstone and argillaceous siltstone—two types of rocks that significantly affect clay mineral quality—based on their chemical composition. During the exploration of Yixing clay mineral resources, the author utilized the Tescan Integrated Mineral Analyzer (TIMA) to test, analyze, and compare the mineral composition, content, and particle size distribution of minerals in borehole core samples and local high-quality clay materials. The results showed that high-quality clay minerals account for over 30%, with a very narrow particle size distribution, primarily within the clay-sized fraction. In contrast, quartz exhibited a broader particle size distribution, ranging from clay-sized to fine sand-sized particles, with a relatively even distribution across different size fractions and a stable or coarser trend in quartz content. Therefore, the composition, content, and particle size distribution of the minerals present are critical factors affecting the quality of clay minerals. TIMA testing not only addresses the limitations of chemical composition in distinguishing between ore and non-ore materials but also effectively identifies the intrinsic relationship between ore quality and product quality.
[1] | CHEN Z G, YU H J, LI C C, CHEN J Y, XIONG J. 2019. Historical evolution and revised recommendation of non-metallic minerals in China[J]. China Non-Metallic Minerals Industry,(1):1-5 (in Chinese with English abstract). |
[2] | EDITORIAL BOARD OF THE HANDBOOK OF INDUSTRIAL REQUIREMENTS FOR MINERAL RESOURCES. 2010. Mineral resources industry requirements reference manual[M]. Beijing: Geology Press, 952 (in Chinese). |
[3] | GUAN Z R. 2018. The characteristics of mineral raw materials in Built water purple pottery, Qinzhou Ningxing pottery and Rongchang[D]. Chengdu: Chengdu University of Technology, 5-9 (in Chinese with English abstract). |
[4] | HRSTKA T, GOTTLIEB P, SKÁLA R, BREITER K, MOTL D. 2018. Automated mineralogy and petrology – applications of TESCAN Integrated Mineral Analyzer (TIMA)[J]. Journal of Geosciences,63(1):47-63. |
[5] | HU Y. 2012. Yixing Zisha development history and living inheritance research[D]. Nanjing: Nanjing Agricultural University, 19-20 (in Chinese with English abstract). |
[6] | HUANG H B, YUAN J, LING B, BAI X, LI M J, LIU J K. 2023. Technical development of arc-emission spectroscopy and its application in geological sample analysis[J]. East China Geology,44(1):103-117 (in Chinese with English abstract). |
[7] | MA C L, JING X H, JIA L Q, LI H, WANG A G. 2023. Add to favorite application of mineral automatic quantitative analysis system in the petrology and mineralogy analysis of aluminiferous rock series: taking Taiyuan formation in the Longdong area as an example[J]. Acta Sedimentologica Sinica, 1-17 (in Chinese with English abstract). |
[8] | MU M L. 2018. Quality relationship between purple sand ore and purple sand pot[J]. Shandong Ceramics, 41(5): 27 (in Chinese). |
[9] | SLAVÍK L, VALENZUELA-RÍOS J I, HLADIL J, CHADIMOVÁ L, LIAO J C, HUŠKOVÁ A, CALVO H, HRSTKA T. 2016. Warming or cooling in the Pragian? Sedimentary record and petrophysical logs across the Lochkovian–Pragian boundary in the Spanish Central Pyrenees[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 449: 300-320. |
[10] | WANG P, PAN Z L, WENG L B. 1982. Systematic mineralogy[M]. Beijing: Geology Press (in Chinese). |
[11] | WARD I, MOE-ASTRUP P, MERIGOT K. 2019. At the water's edge: micromorphological and quantitative mineral analysis of a submerged Mesolithic shell midden at Hjarnø Sund, Denmark[J]. Journal of Archaeological Science,102:11-25. doi: 10.1016/j.jas.2018.12.009 |
[12] | YANG J J, CHEN H Y, JIANG M P, ZHOU Y, QIU F M, LI Z, DING D F. 2022. The study of minerology of Qingshui Zisha clay mineral and the microstructure of sintering products[J]. Conservation and Utilization of Mineral Resources,42(4):128-134 (in Chinese with English abstract). |
[13] | ZHANG P, LI J X. 2022. Study on the distribution and material characteristics of Yixing Zisha pottery ore[J]. China Ceramics,58(1):65-70 (in Chinese with English abstract). |
[14] | ZHANG Q , HUA J , CHENG G H, GE W Y, LU Y Z, XING H X, CHEN Z F, WANG D. 2022.Study on high percentage recovery technology of rock core in loose and fractured layer[J]. East China Geology, 43(3): 306-312(in Chinese with English abstract). |
[15] | ZHENG X W, ZHANG X R, WANG R J, WANG X L, SUN W G. 2023. Trend analysis and influencing factors of soil pH in Honghu City, Hubei Province[J]. East China Geology,44(2):197-205 (in Chinese with English abstract). |
[16] | 陈正国, 于海军, 李朝灿, 陈军元, 熊军. 2019. 我国非金属矿种历史沿革及修订建议[J]. 中国非金属矿工业导刊,(1):1-5. |
[17] | 管志荣. 2018. 建水紫陶、钦州坭兴陶及荣昌安陶等名陶矿物原料特征研究[D]. 成都: 成都理工大学, 5-9. |
[18] | 胡燕. 2012. 宜兴紫砂发展历史及活态传承研究[D]. 南京: 南京农业大学, 19-20. |
[19] | 黄海波, 袁静, 凌波, 白晓, 李民敬, 刘建坤. 2023. 电弧发射光谱技术发展及其在地质领域的应用[J]. 华东地质,44(1):103-117. |
[20] | 《矿产资源工业要求手册》编委会. 2010. 矿产资源工业要求手册[M]. 北京: 地质出版社, 952. |
[21] | 马琛璐, 井向辉, 贾连奇, 李涵, 王爱国. 2023. 矿物自动定量分析系统在含铝岩系岩矿分析中的应用——以陇东地区太原组为例[J]. 沉积学报, 1-17. |
[22] | 穆明龙. 2018. 紫砂矿料与紫砂壶的品质关系[J]. 山东陶瓷,41(5):27. doi: 10.3969/j.issn.1005-0639.2018.05.007 |
[23] | 王濮, 潘兆橹, 翁玲宝. 1982. 系统矿物学[M]. 北京: 地质出版社, 87-88. |
[24] | 杨镓境, 陈海燕, 蒋美平, 周逸, 邱法敏, 李珍, 丁德芳. 2022. 清水泥紫砂矿料工艺矿物学研究及其烧成品微观结构研究[J]. 矿产保护与利用,42(4):128-134. |
[25] | 张鹏, 李娇侠. 2022. 宜兴紫砂陶矿分布与材质特性研究[J]. 中国陶瓷,58(1):65-70. |
[26] | 张庆, 华健, 程光华, 葛伟亚, 陆远志, 邢怀学, 陈宗芳, 王东. 2022.松散及破碎层岩心高采取率技术研究[J]. 华东地质, 43(3): 306-312. |
[27] | 郑雄伟, 张响荣, 王瑞杰, 王晓龙, 孙为国. 2023. 洪湖市土壤酸碱度趋势分析及影响因素[J]. 华东地质,44(2):197-205. |
TIMA testing analysis system
Mineral phase and element surface scanning of sample T05
Trend of mineral size distribution and mineral volume content in clay ore