2024 Vol. 57, No. 6
Article Contents

HONG Bo, TANG Yaming, FENG Wei, LI Zhengguo, PAN Xueshu, FENG Fan, ZHOU Yongheng, YIN Chunwang. 2024. Application of Geological Hazard Risk Assessment System Based on 3D Real Scene and AHP: Example from the Wubu-Yonghe Section along the Yellow River Highway. Northwestern Geology, 57(6): 218-233. doi: 10.12401/j.nwg.2023201
Citation: HONG Bo, TANG Yaming, FENG Wei, LI Zhengguo, PAN Xueshu, FENG Fan, ZHOU Yongheng, YIN Chunwang. 2024. Application of Geological Hazard Risk Assessment System Based on 3D Real Scene and AHP: Example from the Wubu-Yonghe Section along the Yellow River Highway. Northwestern Geology, 57(6): 218-233. doi: 10.12401/j.nwg.2023201

Application of Geological Hazard Risk Assessment System Based on 3D Real Scene and AHP: Example from the Wubu-Yonghe Section along the Yellow River Highway

More Information
  • In order to effectively control, manage and reduce the adverse effects of highway slope geological disasters, this study proposes a new method of highway slope risk assessment based on UAV tilt photography and three-dimensional real scene slope information extraction combined with analytic hierarchy process, and develops a three-dimensional visualization web platform for highway slope risk assessment along the Yellow River Based on cesium. The three-dimensional real scene model and computer algorithm can be used to extract the slope risk evaluation information (including road slope distance, slope, slope height and joint density, etc.) in the room. The AHP is used to evaluate the risk of each slope. According to the comprehensive final risk score, it is divided into five risk levels: extremely low, low, medium, high and extremely high. The proposed method is applied to the risk assessment of slopes along the Yellow River Highway. A total of 656 slopes are evaluated, including 0 extremely low-risk slope, 23 low-risk slope, 405 medium risk slope, 210 high-risk slope and 18 extremely high-risk slope. The evaluation results are consistent with the field survey results, which show that the evaluation system proposed in this paper is effective and reasonable. The system not only realizes the three-dimensional visualization investigation and risk assessment of geological disasters, but also promotes the development of digital and intelligent application of highway slope disaster prevention and reduction technology.

  • 加载中
  • [1] 陈志华, 张俊贤, 张克铭, 等. 云南高速公路无人机倾斜摄影测量实景三维模型建立方法改进及精度提高[J]. 测绘通报, 2019(S1): 275−279. doi: 10.13474/j.cnki.11-2246.2019.0564

    CrossRef Google Scholar

    CHEN Zhihua, ZHANG Junxian, ZHANG Keming, et al. The improved method and accuracy of the establishment of three-dimensional model of UAV tilt photogrammetry scene in Yunnan expressway[J]. Bulletin of Surveying and Mapping,2019(S1):275−279. doi: 10.13474/j.cnki.11-2246.2019.0564

    CrossRef Google Scholar

    [2] 陈宙翔, 叶咸, 张文波, 等. 基于无人机倾斜摄影的强震区公路高位危岩崩塌形成机制及稳定性评价[J]. 地震工程学报, 2019, 41(1): 257−267. doi: 10.3969/j.issn.1000-0844.2019.01.257

    CrossRef Google Scholar

    CHEN Zhouxiang, YE Xian, ZHANG Wenbo, et al. Formation Mechanism Analysis and Stability Evalluationof Dangerous Rock Collapses Based on the Oblique Photography by Unmanned Aerial Vehicles[J]. China Earthquake Engineering Journal,2019,41(1):257−267. doi: 10.3969/j.issn.1000-0844.2019.01.257

    CrossRef Google Scholar

    [3] 崔溦, 谢恩发, 张贵科, 等. 利用无人机技术的高陡边坡孤立危岩体识别[J]. 武汉大学学报·信息科学版, 2021, 46(6): 836−843.

    Google Scholar

    CUI Wei, XIE Enfa, ZHANG Guike, et al. Identification of Isolated Dangerous Rock Mass in High and Steep Slope Using Unmanned Aerial Vehicle[J]. Geomatics and Information Science of Wuhan University,2021,46(6):836−843.

    Google Scholar

    [4] 冯卫, 唐亚明, 马红娜, 等. 基于层次分析法的咸阳市多灾种自然灾害综合风险评价[J]. 西北地质, 2021, 54(2): 282−288.

    Google Scholar

    FENG Wei, TANG Yaming, MA Hongna, et al. Comprehensive Risk Assessment of Multi-hazard Natural Disasters in Xianyang City Based on AHP[J]. Northwestern Geology,2021,54(2):282−288.

    Google Scholar

    [5] 郝瑀然. 中国公路总里程已达528万公里[N]. 北京: 新华社, 2022-04-26

    Google Scholar

    HAO Yuran. The total mileage of highways in China has reached 5.28 million kilometers[N]. Beijing: The Xinhua News Agency, 2022-04-26.

    Google Scholar

    [6] 贾虎军, 王立娟, 范冬丽. 无人机载LiDAR和倾斜摄影技术在地质灾害隐患早期识别中的应用[J]. 中国地质灾害与防治学报, 2021, 32(2): 60−65.

    Google Scholar

    JIA Hujun, WANG Lijuan, FAN Dongli. The application of UAV LiDAR and tilt photography in the early identification of geo-hazards[J]. The Chinese Journal of Geological Hazard and Control,2021,32(2):60−65.

    Google Scholar

    [7] 梁涛, 王浩, 泮俊, 等. 公路边坡风险评估软件RASlope的研发与应用[J]. 中国地质灾害与防治学报, 2016, 27(1): 62−70.

    Google Scholar

    LIANG Tao, WANG Hao, PAN Jun, et al. Development and application of software RASlope for highway slope risk assessment[J]. The Chinese Journal of Geological Hazard and Control,2016,27(1):62−70.

    Google Scholar

    [8] 廖斌, 杨根兰, 覃乙根, 等. 基于无人机技术的高陡危岩体参数获取及稳定性评价[J]. 路基工程, 2021, 217(4): 24−29.

    Google Scholar

    LIAO Bin, YANG Genlan, QIN Yigen, et al. Parameter Acquisition and Stability Evaluation of High and Steep Dangerous Rock Mass Based on UAV[J]. Subgrade Engineering,2021,217(4):24−29.

    Google Scholar

    [9] 廖小平, 徐风光, 蔡旭东, 等. 香丽高速公路边坡地质灾害发育特征与易发性区划[J]. 中国地质灾害与防治学报, 2021, 32(5): 121−129.

    Google Scholar

    LIAO Xiaoping, XU Fengguang, CAI Xudong, et al. Development characteristics and susceptibality zoning of slope geological hazards in Xiangli expressway[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):121−129.

    Google Scholar

    [10] 刘刚, 赵坚, 宋宏伟, 等. 节理密度对围岩变形及破坏影响的试验研究[J]. 岩土工程学报, 2007, 29(11): 1737−1741.

    Google Scholar

    LIU Gang, ZHAO Jian, SONG Hongwei, et al. Physical modelling of effect of joint density on deformation and failure of surrounding rocks[J]. Chinese Journal of Geotechnical Engineering,2007,29(11):1737−1741.

    Google Scholar

    [11] 刘伟, 翟斌斌, 刘燃, 等. 无人机倾斜航空摄影在三维实景建模中的应用[J]. 地理空间信息, 2020, 18(1): 45−46+8.

    Google Scholar

    LIU Wei, ZHAI Binbin, LIU Ran, et al. Application of Unmanned Aerial Vehicle Oblique Photography in Real 3D Modeling[J]. Geospatial Information,2020,18(1):45−46+8.

    Google Scholar

    [12] 刘洋洋, 郭增长, 李永强, 等. 基于熵权集对分析和车载激光扫描的公路边坡危险性评价模型[J]. 岩土力学, 2018, 39(S2): 131−141+156.

    Google Scholar

    LIU Yangyang, GUO Zengzhang, LI Yongqiang, et al. Risk assessment model of highway slope based on entropy weight set pair analysis and vehicle laser scanning[J]. Rock and Soil Mechanics,2018,39(S2):131−141+156.

    Google Scholar

    [13] 吕权儒, 曾斌, 孟小军, 等. 基于无人机倾斜摄影技术的崩塌隐患早期识别及影响区划分方法[J]. 地质科技通报, 2021, 40(6): 313−325.

    Google Scholar

    LÜ Quanru, ZENG Bin, MENG Xiaojun, et al. Early identification and influence range division method of collapse hazards based on UAV oblique photography technology[J]. Bulletin of Geological Science and Technology,2021,40(6):313−325.

    Google Scholar

    [14] 唐亚明, 程秀娟, 薛强, 等. 基于层次分析法的黄土滑塌风险评价指标权重分析[J]. 中国地质灾害与防治学报, 2012a, 23(4): 40−46.

    Google Scholar

    TANG Yaming, CHENG Xiujuan, XUE Qiang, et al. Weights analysis of Loess collapse risk assessing factors based on analytical hierarchy process[J]. The Chinese Journal of Geological Hazard and Control,2012a,23(4):40−46.

    Google Scholar

    [15] 唐亚明, 薛强, 毕俊擘, 等. 陕北黄土崩塌灾害风险评价指标体系构建[J]. 地质通报, 2012b, 31(6): 979−988.

    Google Scholar

    TANG Yaming, XUE Qiang, BI Junbo, et al. The construction of factors for assessing the risk of collapse at loess slopes in northern Shaanxi Province[J]. Geological Bulletin of China,2012b,31(6):979−988.

    Google Scholar

    [16] 田媛, 巨能攀, 解明礼, 等. 滑坡编录表达模式对易发性评价结果的影响[J]. 成都理工大学学报(自然科学版), 2022, 49(5): 606−615.

    Google Scholar

    TIAN Yuan, JU Nengpan, XIE Mingli, et al. Analysis of the impact of landslide cataloguing expression patterns on the evaluation results of landslide susceptibility[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2022,49(5):606−615.

    Google Scholar

    [17] 王红杰, 卞孝东, 邓晓伟, 等. 基于模糊数学理论的煤矿地下空间开发利用适宜性评价——以白源煤矿为例[J]. 西北地质, 2021, 54(4): 156−170.

    Google Scholar

    WANG Hongjie, BIAN Xiaodong, DENG Xiaowei, et al. Suitability Evaluation of Underground Space Development and Utilization of Coal Mine Based on Fuzzy Mathematics Theory: Taking Baiyuan Coal Mine as an Example[J]. Northwestern Geology,2021,54(4):156−170.

    Google Scholar

    [18] 王俊豪, 魏云杰, 梅傲霜, 等. 基于无人机倾斜摄影的黄土滑坡信息多维提取与应用分析[J]. 中国地质, 2021, 48(2): 388−401.

    Google Scholar

    WANG Junhao, WEI Yunjie, MEI Aoshuang, et al. Multidimensional extraction of UAV tilt photography-based information of loess landslide and its application[J]. Geology in China,2021,48(2):388−401.

    Google Scholar

    [19] 王萌, 何思明, 张小刚. S210线芦山-宝兴段崩塌灾害危险性分析及防治对策建议[J]. 中国地质灾害与防治学报, 2014, 25(3): 101−106.

    Google Scholar

    WANG Meng, HE Siming, ZHANG Xiaogang. Study on S210 line Lushan-Baoxing segment collapse hazard assessment and control measures[J]. The Chinese Journal of Geological Hazard and Control,2014,25(3):101−106.

    Google Scholar

    [20] 谢金, 杨根兰, 覃乙根, 等. 基于无人机与Rockfall的危岩体结构特征识别与运动规律模拟[J]. 河南理工大学学报(自然科学版), 2021, 40(1): 55−64.

    Google Scholar

    XIE Jin, YANG Genlan, QIN Yigen, et al. Structural feature recognition and motion law simulation of dangerous rock mass based on UAV and Rockfall[J]. Journal of Henan Polytechnic University (Natural Science),2021,40(1):55−64.

    Google Scholar

    [21] 杨波, 管后春, 杨潘, 等. 基于三维GIS的第四系古河道沉积区工程建设适宜性评价研究[J]. 西北地质, 2021, 54(3): 244−252.

    Google Scholar

    YANG Bo, GUAN Houchun, YANG Pan, et al. Research on 3D GIS-Based Suitability Evaluation of Engineering Construction of the Quaternary Paleo-channel Sedimentary Area[J]. Northwestern Geology,2021,54(3):244−252.

    Google Scholar

    [22] 姚富潭, 吴明堂, 董秀军, 等. 基于贴近摄影测量技术的高陡危岩体结构面调查方法[J]. 成都理工大学学报(自然科学版), 2023, 50(2): 218−228.

    Google Scholar

    YAO Futan, WU Mingtang, DONG Xiujun, et al. Investigation method of discontinuity in high and steep dangerous rock mass based on nap of the object photogrammetry[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2023,50(2):218−228.

    Google Scholar

    [23] 赵银鑫, 公亮, 吉卫波, 等. 宁夏银川市浅层地温能赋存条件和开发利用潜力评价[J]. 西北地质, 2023, 56(5): 172−184.

    Google Scholar

    ZHAO Yinxin, GONG Liang, JI Weibo, et al. Conditions for the Occurrence and Development and Utilization Potential Evaluation of Shallow Geothermal Energy in Yinchuan City, Ningxia[J]. Northwestern Geology,2023,56(5):172−184.

    Google Scholar

    [24] 周福军. 高原复杂山区铁路无人机倾斜摄影勘察技术应用研究[J]. 铁道标准设计, 2021, 65(6): 1−5.

    Google Scholar

    ZHOU Fujun. Application of Unmanned Aerial Vehicle Oblique Photography Survey Technology for Railway in Complex Plateau Mountain Area[J]. Railway Standard Design,2021,65(6):1−5.

    Google Scholar

    [25] Abdelkarim A, Al-Alola S S, Alogayell H M, et al. Integration of GIS-Based Multicriteria Decision Analysis and Analytic Hierarchy Process to Assess Flood Hazard on the Al-Shamal Train Pathway in Al-Qurayyat Region, Kingdom of Saudi Arabia[J]. Water,2020(12):1702.

    Google Scholar

    [26] Cheng M L, Matsuoka M. Extracting three-dimensional (3D) spatial information from sequential oblique unmanned aerial system (UAS) imagery for digital surface modeling[J]. International Journal of Remote Sensing,2020(42):1643−1663.

    Google Scholar

    [27] Ding Y, Wang P, Liu X, et al. Risk assessment of highway structures in natural disaster for the property insurance[J]. Natural Hazards,2020(104):2663−2685.

    Google Scholar

    [28] Du Y, Sheng Q, Fu X, et al. Risk evaluation of colluvial cutting slope based on fuzzy analytic hierarchy process and multilevel fuzzy comprehensive evaluation[J]. Journal of Intelligent & Fuzzy Systems,2019(37):4253−4271.

    Google Scholar

    [29] Fan W, Wei X S, Cao Y B, et al. Landslide susceptibility assessment using the certainty factor and analytic hierarchy process[J]. Journal of Mountain Science,2017(14):906−925.

    Google Scholar

    [30] Ferrero A M, Migliazza M, Roncella R, et al. Rock slopes risk assessment based on advanced geostructural survey techniques[J]. Landslides,2010(8):221−231.

    Google Scholar

    [31] Gregory Lederer M. Nadir and Oblique Uav Photogrammetry Techniques for Quantitative Rock Fall Evaluation in the Rimrocks of South-Central Montana[D], Montana: Montana Technology. 2020.

    Google Scholar

    [32] Guo B, Chen Z X, Zhang M, et al. Risk Assessment Index System for Soil-Similar Slopes and Application in Highway Engineering[C]. In "CICTP 2019: Transportation in China—Connecting the World", Nanjing, China. 2019, 799-810.

    Google Scholar

    [33] Hepdeniz K. Using the analytic hierarchy process and frequency ratio methods for landslide susceptibility mapping in Isparta-Antalya highway (D-685), Turkey[J]. Arabian Journal of Geosciences,2020(13):795.

    Google Scholar

    [34] Li A J, Khoo S, Lyamin A V, et al. Rock slope stability analyses using extreme learning neural network and terminal steepest descent algorithm[J]. Automation in Construction,2016(65):42−50.

    Google Scholar

    [35] Myronidis D, Papageorgiou C, Theophanous S. Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP)[J]. Natural Hazards,2015(81):245−263.

    Google Scholar

    [36] Oboni F, Oboni C H. Holistic geoethical slope portfolio risk assessment[J]. Geological Society, London, Special Publications,2020(508):225−243.

    Google Scholar

    [37] Pal S C, Das B, Malik S. Potential Landslide Vulnerability Zonation Using Integrated Analytic Hierarchy Process and GIS Technique of Upper Rangit Catchment Area, West Sikkim, India[J]. Journal of the Indian Society of Remote Sensing,2019(47):1643−1655.

    Google Scholar

    [38] Panchal S, Shrivastava A K. Landslide hazard assessment using analytic hierarchy process (AHP): A case study of National Highway 5 in India[J]. Ain Shams Engineering Journal,2022(13):101626.

    Google Scholar

    [39] Qiang Y, Wang G, Li R, et al. Risk assessment of geological hazards in mountain town scale based on FLO-2D and GIS[J]. IOP Conference Series: Earth and Environmental Science,2021(861):052042.

    Google Scholar

    [40] Rashid B, Iqbal J, Su L J. Landslide susceptibility analysis of Karakoram highway using analytical hierarchy process and scoops 3D[J]. Journal of Mountain Science,2020(17):1596−1612.

    Google Scholar

    [41] Saaty T L. Fundamentals of the Analytic Hierarchy Process[A]. Schmoldt D L, Kangas J, Mendoza G A, et al. , eds. The Analytic Hierarchy Process in Natural Resource and Environmental Decision Making, Managing Forest Ecosystems[C]. Springer, Dordrecht, 2001(3): 15-35.

    Google Scholar

    [42] Saaty T L. Decision making with the analytic hierarchy process[J]. International Journal of Services Sciences,2008(1):83−98.

    Google Scholar

    [43] Su H Z, Yang M, Wen Z P. Comprehensive evaluation of high rocky slope safety through an integrated analytic hierarchy process and extension matter model[J]. Natural Hazards and Earth System Sciences, 2016(16).

    Google Scholar

    [44] Svennevig K, Guarnieri P, Stemmerik L. From oblique photogrammetry to a 3D model–Structural modeling of Kilen, eastern North Greenland[J]. Computers & Geosciences,2015(83):120−126.

    Google Scholar

    [45] Tang F, Ruan Z, Li L. Application of unmanned aerial vehicle oblique photography in 3D modeling of crag[C]. In "Tenth International Conference on Digital Image Processing (ICDIP 2018)", Shanghai, China,2018,Proceedings Volume 10806.

    Google Scholar

    [46] Tang Y, Guo Z, Wu L, et al. Assessing Debris Flow Risk at a Catchment Scale for an Economic Decision Based on the LiDAR DEM and Numerical Simulation[J]. Frontiers in Earth Science,2022(10):821735.

    Google Scholar

    [47] Thiebes B, Bell R, Glade T, et al. A WebGIS decision-support system for slope stability based on limit- equilibrium modelling[J]. Engineering Geology,2013(158):109−118.

    Google Scholar

    [48] Xiao H, Tang X, Zhang H. Risk Assessment of Debris Flow in Longchi Area of Dujiangyan based on GIS and AHP[J]. IOP Conference Series: Earth and Environmental Science,2020(474):042010.

    Google Scholar

    [49] Yang W, Zheng Z, Zhang X, et al. Analysis of landslide risk based on fuzzy extension analytic hierarchy process[J]. Journal of Intelligent & Fuzzy Systems,2017(33):2523−2531.

    Google Scholar

    [50] Yao X, Deng H, Zhang T, et al. Multistage fuzzy comprehensive evaluation of landslide hazards based on a cloud model[J]. PLoS One,2019(14):e0224312.

    Google Scholar

    [51] Zhang J, He P, Xiao J, et al. Risk assessment model of expansive soil slope stability based on Fuzzy-AHP method and its engineering application[J]. Geomatics, Natural Hazards and Risk,2018(9):389−402.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(18)

Tables(9)

Article Metrics

Article views(264) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint