2024 Vol. 43, No. 10
Article Contents

GAO Xuezheng, KONG Zhaoyu, SHANG Yuntao, LI Xiaolei, QI Fanyu, ZHANG Bo. 2024. Research on the development strategy of basic geological survey based on the current situation of geological achievements. Geological Bulletin of China, 43(10): 1881-1891. doi: 10.12097/gbc.2023.11.038
Citation: GAO Xuezheng, KONG Zhaoyu, SHANG Yuntao, LI Xiaolei, QI Fanyu, ZHANG Bo. 2024. Research on the development strategy of basic geological survey based on the current situation of geological achievements. Geological Bulletin of China, 43(10): 1881-1891. doi: 10.12097/gbc.2023.11.038

Research on the development strategy of basic geological survey based on the current situation of geological achievements

More Information
  • Basic geological survey is a public welfare and advanced geological work to obtain the basic geological conditions of the survey area, which is of great significance to mineral exploration planning, development and major infrastructure construction. With the rapid development of China's economy and the continuous advancement of a new round of prospecting breakthrough strategic action, the basic geological survey work will continue to be strengthened, and the achievements will play an increasingly important role. Based on the analysis of the current situation of the basic geological survey achievements collected in the National Geological Archives of China, this paper puts forward some suggestions to improve the level of achievement sharing, strengthen the top−level design of products and improve the ability of information service. Based on the analysis results of geological achievements, this paper discusses the problems faced by basic geological survey, such as insufficient coverage, gap with national needs, insufficient data update, and traditional mapping techniques. It puts forward some countermeasures and suggestions to improve the level of basic geological survey in key areas, provide timely and authoritative basic geological data, and strengthen the research on new methods of geological mapping, so as to better play the basic leading role of basic geological survey in serving national economic construction.

  • 加载中
  • [1] Allen P M. 1997. Standardization of mapping practices in the British Geological Survey[J]. Computers & Geosiences, 23(6): 609−612.

    Google Scholar

    [2] Badard T. 1998. Towards a generic updating tool for geographic data−base[C] //Proceedings of GIS/LIS’98 Annual exposition and conference. Texas, USA: Fort Worth: 352−363.

    Google Scholar

    [3] Bain K A, Giles J R A. 1997. A standard model for storageof geological map data[J]. Computers & Geosiences, 23(6): 613−620.

    Google Scholar

    [4] Feng Y F, Liu J T, Liu Y, et al. 2022. Updating basic geological data: Current status at home and abroad and suggestions for future improvements[J]. Earth Science Frontiers, 29(2): 370−377(in Chinese with English abstract).

    Google Scholar

    [5] Gao X Z. 2016. The Research research on the Present present Situation situation and Countermeasure countermeasure Analysis analysis of Geologic geologic Data data Service service in National national Geological geological Archivesarchives[D]. Beijing: China University of Geosciences(Beijing): Master's degree Degree thesisThesis: 14−20(in Chinese with English abstract).

    Google Scholar

    [6] Gao X Z, Li X L, Shang Y T, et al. 2019. Report on the dData Distribution distribution and Online online Service service of the National Geological Archives in 2018[M]. Beijing: Geological Publishing House(in Chinese).

    Google Scholar

    [7] Gill J C. 2016. Geology and the Sustainable sustainable Development development Ggoals[J]. Episodes, 40(1): 70−76.

    Google Scholar

    [8] Jiang Z Q. 2008. Present status and features of informationization of the full process of regional geological survey at home and abroad[J]. Geological Bulletin of China, 27(7): 956−964(in Chinese with English abstract).

    Google Scholar

    [9] Li C Y, L F Y, Li J, et al. 2019a. National Mineral mineral Deposit deposit Database database of China[J]. Geology in China, 46(S2): 1−10(in Chinese with English abstract).

    Google Scholar

    [10] Li C Y, Wang X C, He C Z, et al. 2019b. China National national Digital digital Geological geological Mapmap(Public public Version version at 1: 200 000 Scale) Spatial spatial Databasedatabase[J]. Geology in China, 46(S1): 1−10(in Chinese with English abstract).

    Google Scholar

    [11] Li J F. 2024. Work Report report of the China Geological Survey in 2024[R]. Beijing: China Geological Survey.

    Google Scholar

    [12] Li T D. 2003. Strengthening fundamental geological research, promoting the benign development of geological work[J]. Geological Bulletin of China, 22(9): 647−650(in Chinese with English abstract).

    Google Scholar

    [13] Lü Q T, Shi D N, Zhao J H, et al. 2005. Seismic method for deep mineral exploration: Problems and prospects--A case study of the Tongling ore district[J]. Geological Bulletin of China, 24(3): 211−218(in Chinese with English abstract).

    Google Scholar

    [14] Pang J F, Ding X Z, Han K Y, et al. 2017. The national 1: 1000000 geological map spatial database[J]. Geology in China, 44(S1): 8−18(in Chinese with English abstract).

    Google Scholar

    [15] Qi F Y, Wu X, Gao X Z. 2018. Research on development, problems and countermeasures of geological data service: taking Taking the National Geological Archives of China as a case study[J]. China Mining Magazine, 27(4): 53−56(in Chinese with English abstract).

    Google Scholar

    [16] Qi F Y, Li X L, Gao X Z, et al. 2022. Research on the construction and application of geological database system based on the development and utilization of geological data[J]. Natural Resources Informatization, 6: 25−31(in Chinese with English abstract).

    Google Scholar

    [17] Qi F Y, Li X L, Kong Z Y, et al. 2023. Research on geological data service demand and product design for the new round of prospecting breakthrough strategy[J]. China Mining Magazine, 32(10): 47−53(in Chinese with English abstract).

    Google Scholar

    [18] Qi G, Lu Q T, Yan J Y, et al. 2012. Geologic constrained 3D gravity and magnetic modeling of Nihe deposit --A case study[J]. Chinese Journal of Geophysics, 55(12): 4194−4206(in Chinese with English abstract).

    Google Scholar

    [19] Ren H. 2022. Further study on the related issues of the new round of prospecting breakthrough strategy[J]. Coal Geology of China, 34(11): 1−8(in Chinese with English abstract).

    Google Scholar

    [20] Shi J F. 2020. The major accomplishments and geological events during the past two decades in the world and their implications for geological work in China in the next thirty years[J]. Geological Bulletin of China, 39(12): 2044−2057(in Chinese with English abstract).

    Google Scholar

    [21] Shi J F, Ren S M, Huo Y Q, et al. 2022. Geological Work work Strategy strategy in the New new Eraera[M]. Beijing: Geological Publishing House: 278−283(in Chinese).

    Google Scholar

    [22] Siler D L, Faulds J E, Glen Jonathan M G, et al. 2019. Three−Dimensional heologic map of the southern Carson Sink, Nevada, including the Fallon FORGE area[R]. U. S. Geological Survey.

    Google Scholar

    [23] Tan Y J, Wen M. 2023. Research progress and prospect of geological informatization construction[J] Geological Survey of China, 10(2): 1−9(in Chinese).

    Google Scholar

    [24] Wang B, Li J C, Wang C X, et al. 2019. Thoughts on promoting the exploitation and utilization of geological data in China[J]. Geological Bulletin of China, 38(8): 1396−1402(in Chinese with English abstract).

    Google Scholar

    [25] Wang T, Ji W H, Hu J M, et al. 2016. Geological mapping for special issues and a discussion on related topics[J]. Geological Bulletin of China, 35(5): 633−641(in Chinese with English abstract).

    Google Scholar

    [26] Wang X C, Qi F Y, Li X L, et al. 2016. Research on the geological data integration and service: A case study of geological work in the equipped exploration area[J]. Geology in China, 43(2): 691−697(in Chinese with English abstract).

    Google Scholar

    [27] Wang X, Li J C, Chen H, et al. 2015. Big and geological data information services[J]. Geological Bulletin of China, 34(7): 1309−1315(in Chinese with English abstract).

    Google Scholar

    [28] Waters C N, Terrington R L, Cooper M R, et al. 2015. The construction of a bedrock geology model for the UK: UK3D_v2015[R]. British Geological Survey.

    Google Scholar

    [29] Wei S Z, Guo C M, Zhou Y Z. 1983. Experimental study on three−dimensional geomechanical model of the anti−sliding stability of the Erjiang sluice in the Gezhouba Project[J]. Journal of Hydraulic Engineering, 6(6): 36−44. (in Chinese).

    Google Scholar

    [30] Wu X P, Wang Q J, Jiang T Y, et al. 2020. Geological data information management and service system construction based on "internet + government service"[J]. Geological Bulletin of China, 39(10): 1663−1668(in Chinese with English abstract).

    Google Scholar

    [31] Xia G Z, Cheng Y Q. 1990. Geological Undertakings in Contemporary China[M]. Beijing: China Social Sciences Press: 99−101(in Chinese).

    Google Scholar

    [32] Xiang Y C, Mou X Z, Ren T X, et al. 2018. China regional geochemical exploration database[J]. Geology in China, 45(S1): 32−44(in Chinese with English abstract).

    Google Scholar

    [33] Xiao G Y, Mao X C, Li M, et al. 2014. New progress in basic geological survey in china and thoughts on business development directions[J]. Geological Survey of China, 1(3): 7−8(in Chinese).

    Google Scholar

    [34] Xu B Q, Yan S Q, Wang Q J, et al. 2014. Geospatial data infrastructure: The development of metadata for geo−information in China[C]//IOP Conf. Series: Earth and Environmental Science 17, doi: 10.1088/1755−1315/17/1/012259.

    Google Scholar

    [35] Yan G S, Xue Q W, Xiao K Y, et al. 2015. An analysis of major problems in geological survey big data[J]. Geological Bulletin of China, 34(7): 1273−1279(in Chinese with English abstract).

    Google Scholar

    [36] Yan J Y, Lu Q T, Chen X B, et al. 2014. 3D lithologic mapping test based on 3D inversion of gravity and magnetic data: A case study in Lu−Zong ore concentration district, Anhui Province[J]. Acta Petrologica Sinica, 30(4): 1041−1053(in Chinese with English abstract).

    Google Scholar

    [37] Yang S R, Li F T, Zhang C. 2018. Encyclopedia of Geosciences in China[M]. Shaanxi: Shaanxi Normal University General Publishing House: 344−347(in Chinese).

    Google Scholar

    [38] Yao H J. 2009. Thoughts on promotion of public service of geological data[J]. Geological Bulletin of China, 28(2−3): 359−366(in Chinese with English abstract).

    Google Scholar

    [39] Ye T Z, Huang C K, Deng Z Q. 2017. Spatial database of 1: 2 500 000 digital geologic map of People's Republic of China[J]. Geology in China, 44(S1): 19−24(in Chinese with English abstract).

    Google Scholar

    [40] Yin F G, Zhang H, Huang Y, et al. 2012. Advances in the basic geological survey along Dali−Ruili section of Fanya railway, western Yunnan Province[J]. Geological Bulletin of China, 31(2/3): 218−226(in Chinese with English abstract).

    Google Scholar

    [41] Yu J. 2021. Analysis of the role of basic geological survey[J]. Western Resources, 1: 47−48(in Chinese).

    Google Scholar

    [42] Zhang W H, Gao Y J, Zhou X G, et al. 2021. The new prospecting and direction of non− profit petroleum basic geological survey in China[J]. Acta Geologica Sinica, 95(5): 1630−1643(in Chinese with English abstract).

    Google Scholar

    [43] Zhang X L, Dou J L, Zheng Y L, et al. 2010. Strengthens the geological data re−development, to provide the information supports to realize the new breakthrough of geology prospecting[J]. Geological Bulletin of China, 29(4): 622−626(in Chinese with English abstract).

    Google Scholar

    [44] Zhao P D. 2015. Digital mineral exploration and quantitative evaluation in the big data age[J]. Geological Bulletin of China, 34(7): 1255−1259(in Chinese with English abstract).

    Google Scholar

    [45] Zheng X, Wu Z C, Zhang Y Y, et al. 2013. The new progress of overseas 3D−Geological geological Mappingmapping[J]. Journal of East China University of Technology(Social Science), 32(3): 397−402(in Chinese).

    Google Scholar

    [46] Zhu R X, Hou Z Q, Guo Z T, et al. 2021. Summary of “the past, present and future of the habitable Earth: Development strategy of Earth science”[J]. Chinese Science Bulletin, 66(35): 4485−4490(in Chinese). doi: 10.1360/TB-2021-1051

    CrossRef Google Scholar

    [47] Zhu Y Q, Tan Y J, Li R X, et al. 2016. Cyber−physical−social−thinking modeling and computing for geological information service system[J]. International Journal of Distributed Sensor Networks, 12(11): 1−9.

    Google Scholar

    [48] Zhu Y S. 1999. A new task of fundamental geological investigations-- A discussion of the new concept of geological ecological mapping[J]. Geological Bulletin of China, 18(2): 122−126(in Chinese with English abstract).

    Google Scholar

    [49] Zuo Q C, Ye T Z, Feng Y F, et al. 2018. Spatial database of serial suite−tectonic map−sheets of mainland China(1: 250, 000)[J]. Geology in China, 45(S1): 1−26(in Chinese with English abstract).

    Google Scholar

    [50] 冯艳芳, 刘江涛, 刘勇, 等. 2022. 国内外基础地质数据更新现状与思考[J]. 地学前缘, 29(2): 370−377.

    Google Scholar

    [51] 高学正. 2016. 全国地质资料馆地质资料服务现状及对策研究[D]. 北京: 中国地质大学(北京)硕士学位论文: 14−20.

    Google Scholar

    [52] 高学正, 李晓蕾, 商云涛, 等. 2019. 2018年度全国地质资料馆、数据分发与在线服务情况报告[M]. 北京: 地质出版社: 8−15.

    Google Scholar

    [53] 姜作勤. 2008. 国内外区域地质调查全过程信息化的现状与特点[J]. 地质通报, 27(7): 956−964.

    Google Scholar

    [54] 李晨阳, 刘锋英, 李军, 等. 2019a. 全国矿产地数据库[J]. 中国地质, 46(S2): 1−18.

    Google Scholar

    [55] 李晨阳, 王新春, 何春珍, 等. 2019b. 全国1∶200 000数字地质图(公开版)空间数据库[J]. 中国地质, 46(S1): 1−10.

    Google Scholar

    [56] 李金发. 2024. 中国地质调查局2024年度工作报告[R]. 中国地质调查局.

    Google Scholar

    [57] 李廷栋. 2003. 加强基础地质研究推动地质工作可持续发展[J]. 地质通报, 22(9): 647−650.

    Google Scholar

    [58] 吕庆田, 史大年, 赵金花, 等. 2005. 深部矿产勘查的地震学方法: 问题与前景——铜陵矿集区的应用实例[J]. 地质通报, 24(3): 211−218.

    Google Scholar

    [59] 庞健峰, 丁孝忠, 韩坤英, 等. 2017. 1∶100万中华人民共和国地质图空间数据库[J]. 中国地质, 44(S1): 8−18.

    Google Scholar

    [60] 齐钒宇, 吴轩, 高学正. 2018. 我国地质资料服务进展、问题及对策研究: 以全国地质资料馆为例[J]. 中国矿业, 27(4): 53−56.

    Google Scholar

    [61] 齐钒宇, 李晓蕾, 高学正, 等. 2022. 基于地质资料开发利用的地质数据库体系构建与应用研究[J]. 自然资源信息化, 6: 25−31. doi: 10.3969/j.issn.1674-3695.2022.06.005

    CrossRef Google Scholar

    [62] 齐钒宇, 李晓蕾, 孔昭煜, 等. 2023. 面向新一轮找矿突破战略行动的地质资料服务需求与产品设计研究[J]. 中国矿业. 32(10): 47−53.

    Google Scholar

    [63] 祁光, 吕庆田, 严加永, 等. 2012. 先验地质信息约束下的三维重磁反演建模研究——以安徽泥河铁矿为例[J]. 地球物理学报, 55(12): 4194−4206.

    Google Scholar

    [64] 任辉. 2022. 对新一轮找矿突破战略行动相关问题的进一步研究[J]. 中国煤炭地质, 34(11): 1−8.

    Google Scholar

    [65] 施俊法. 2020. 21世纪前20年世界地质工作重大事件、重大成果与未来30年中国地质工作发展的思考[J]. 地质通报, 39(12): 2044−2057.

    Google Scholar

    [66] 施俊法, 任收麦, 霍雅勤, 等. 2022. 新时代地质工作方略[M]. 北京: 地质出版社: 278−283.

    Google Scholar

    [67] 谭永杰, 文敏. 2023. 地质信息化建设研究进展与展望[J]. 中国地质调查, 10(2): 1−9.

    Google Scholar

    [68] 王斌, 李景朝, 王成锡, 等. 2019. 关于推进地质资料开发利用工作的思考[J]. 地质通报, 38(8): 1396−1402.

    Google Scholar

    [69] 王涛, 计文化, 胡建民, 等. 2016. 专题地质填图及有关问题讨论[J]. 地质通报, 35(5): 633−641.

    Google Scholar

    [70] 王翔, 李景朝, 陈辉, 等. 2015. 大数据与地质资料信息服务: 需求、产品、技术、共享[J]. 地质通报, 34(7): 1309−1315.

    Google Scholar

    [71] 王新春, 齐钒宇, 李晓蕾, 等. 2016. 资料数据集成与服务研究——以整装勘查区地质工作为例[J]. 中国地质, 43(2): 691−697.

    Google Scholar

    [72] 魏世臧, 郭春茂, 周仰贞. 1983. 葛洲坝工程二江泄水闸抗滑稳定的三维地质力学模型实验研究[J]. 水利学报, 6(6): 36−44.

    Google Scholar

    [73] 吴小平, 王黔驹, 姜天阳, 等. 2020. 基于“互联网+政务服务”的地质资料信息管理服务系统建设[J]. 地质通报, 39(10): 1663−1668.

    Google Scholar

    [74] 夏国治, 程裕琪. 1990. 当代中国地质事业[M]. 北京: 中国社会科学出版社: 99−101.

    Google Scholar

    [75] 向运川, 牟绪赞, 任天祥, 等. 2018. 全国区域化探数据库[J]. 中国地质, 45(S1): 32−44.

    Google Scholar

    [76] 肖桂义, 毛晓长, 李敏, 等. 2014. 中国基础地质调查新进展及业务发展方向思考[J]. 中国地质调查, 1(3): 7−8.

    Google Scholar

    [77] 严光生, 薛群威, 肖克炎, 等. 2015. 地质调查大数据研究的主要问题分析[J]. 地质通报, 34(7): 1273−1279.

    Google Scholar

    [78] 严加永, 吕庆田, 陈向斌, 等. 2014. 基于重磁反演的三维岩性填图试验——以安徽庐枞矿集区为例[J]. 岩石学报.

    Google Scholar

    [79] 杨守仁, 李凤棠, 张臣. 2018. 中国地学通鉴[M]. 西安: 陕西师范大学出版总社: 344−347.

    Google Scholar

    [80] 姚华军. 2009. 关于推进地质资料公共服务问题的思考[J]. 地质通报, 28(2/3): 359−366.

    Google Scholar

    [81] 叶天竺, 黄崇轲, 邓志奇. 2017. 1∶250万中华人民共和国数字地质图空间数据库[J]. 中国地质, 44(S1): 19−24.

    Google Scholar

    [82] 尹福光, 张虎, 黄勇, 等. 2012. 泛亚铁路滇西大理至瑞丽段基础地质综合调查进展[J]. 地质通报, 31(2/3): 218−226.

    Google Scholar

    [83] 于军. 2021. 基础地质调查的作用分析[J]. 西部资源, 1: 47−48.

    Google Scholar

    [84] 张文浩, 高永进, 周新桂, 等. 2021. 公益性油气基础地质调查的进展与发展方向[J]. 地质学报, 95(5): 1630−1643.

    Google Scholar

    [85] 张兴辽, 豆敬磊, 郑亚琳, 等. 2010. 强化地质资料编研开发为实现地质找矿新突破提供信息支撑[J]. 地质通报, 29(4): 622−626.

    Google Scholar

    [86] 赵鹏大. 2015: 大数据时代数字找矿与定量评价[J]. 地质通报, 34(7): 1255−1259.

    Google Scholar

    [87] 郑翔, 吴志春, 张洋洋, 等. 2013. 国外三维地质填图的新进展[J]. 东华理工大学学报(社会科学版), 32(3): 397−402.

    Google Scholar

    [88] 朱日祥, 侯增谦, 郭正堂, 等. 2021. 宜居地球的过去、现在与未来——地球科学发展战略概要[J]. 科学通报, 66(35): 4485−4490.

    Google Scholar

    [89] 朱裕生. 1999. 基础地质调查的新任务——关于地质-生态环境调查新概念的探讨[J]. 中国区域地质, 18(2): 122−126.

    Google Scholar

    [90] 左群超, 叶天竺, 冯艳芳, 等. 2018. 中国陆域1∶25万分幅建造构造图空间数据库[J]. 中国地质, 45(S1): 1−26. doi: 10.12029/gc2018Z101

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(3)

Article Metrics

Article views(302) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint