Citation: | MEI Yajun, HUI Bo, YANG Yaohui. Distribution Pattern and Occurrence State of Cobalt in Panxi Taihe Vanadium-titanium Magnetite[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(5): 63-70, 75. doi: 10.3969/j.issn.1000-6532.2024.05.010 |
This is an article in the field of process mineralogy. Cobalt is a strategic metal primarily found as an associated element in metal deposits. The Panxi region's vanadium-titanium magnetite deposit, the largest of its kind in China, also contains significant cobalt resources. Yet, the distribution and microscopic occurrence of cobalt within the mineral phases of cobalt-rich ores remain unexplored. This paper focuses on the Taihe vanadium-titanium magnetite deposit in Panxi area as the research object, and uses chemical analysis, optical microscopy, scanning electron microscopy (SEM-BSE), X-ray diffraction analysis (XRD), advanced mineral identification and characterization system (AMICS), electron probe microscopy (EPMA) and other analytical techniques to study the chemical composition, mineral composition and distribution law and occurrence state of Co element in different minerals of typical cobalt-rich ores in the deposit. The research results show that the sulfide in the cobalt-rich sample mineral has a higher cobalt content, while the cobalt content in the iron-titanium oxide is lower, and other minerals contain almost no cobalt. The distribution law of cobalt shows that it is mainly distributed in sulfides, and a small amount is distributed in iron-titanium oxides and gangue minerals. The cobalt element in the sample has two occurrence states: independent mineral-sulfur cobalt nickel ores and isomorphous. The research results provide a mineralogical foundation for the comprehensive utilization of cobalt resources in the area.
[1] | 翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2):106-111.ZHAI M G, WU F Y, HU R Z, et al. Critical metal mineral resources: current research status and scientific issues[J]. National Science Foundation, 2019, 33(2):106-111. ZHAI M G, WU F Y, HU R Z, et al. Critical metal mineral resources: current research status and scientific issues[J]. National Science Foundation, 2019, 33(2):106-111. |
[2] | 卢宜冠, 郝波, 孙凯, 等. 钴金属资源概况与资源利用情况分析[J]. 地质调查与研究, 2020, 43(1):72-80.LU Y G, HAO B, SUN K, et al. General situation of cobalt resource and its utilization analysis[J]. Geological Survey and Research, 2020, 43(1):72-80. LU Y G, HAO B, SUN K, et al. General situation of cobalt resource and its utilization analysis[J]. Geological Survey and Research, 2020, 43(1):72-80. |
[3] | Horn S, Gunn A G, Petavratzi E, et al. Cobalt resources in Europe and the potential for new discoveries[J]. Ore Geology Reviews, 2021, 130:103915. doi: 10.1016/j.oregeorev.2020.103915 |
[4] | 张惠, 吴西顺, 杨添天, 等. 全球钴矿产的供应安全与技术创新[J]. 矿产综合利用, 2022, 43(4):134-142.ZHANG H, WU X H, YANG T T, et al. Supply security and technological innovation of global cobalt minerals[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(4):134-142. ZHANG H, WU X H, YANG T T, et al. Supply security and technological innovation of global cobalt minerals[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(4):134-142. |
[5] | 刘彬, 王银宏, 王臣, 等. 中国钴资源产业形势与对策建议[J]. 资源与产业, 2014, 16:113-119.LIU B, WANG Y H, WANG C, et al. Situation and suggestions of China’s cobalt resources industry[J]. ResourInd, 2014, 16:113-119. LIU B, WANG Y H, WANG C, et al. Situation and suggestions of China’s cobalt resources industry[J]. ResourInd, 2014, 16:113-119. |
[6] | BROWN A C. World-class sediment-hosted stratiform copper deposits: Characteristics, genetic concepts and metallotects[J]. Australian J Earth Sci, 1997, 44:317-328. doi: 10.1080/08120099708728315 |
[7] | BERGER V I, SINGER D A, BLISS J D, et al. Ni-Co laterite deposits of the world−database and grade and tonnage models[J]. US Geological Survey Open-File Report 2011-1058, US Geological Survey. 2011. |
[8] | 汤中立. 中国岩浆硫化物矿床的主要成矿机制[J]. 地质学报, 1996, 70(3):237-243.TANG Z L. The main mineralization mechanism of magma sulfide deposits in China[J]. Acta Geologica Sinica, 1996, 70(3):237-243. doi: 10.19762/j.cnki.dizhixuebao.1996.03.005 TANG Z L. The main mineralization mechanism of magma sulfide deposits in China[J]. Acta Geologica Sinica, 1996, 70(3):237-243. doi: 10.19762/j.cnki.dizhixuebao.1996.03.005 |
[9] | MEINERT L D, DIPPLE G M, NICOLESCU S. World skarn deposits. In: Hedenquist J W, Thompson J F H, Goldfarb R J, et al. , eds. Economic Geology 100th Anniversary Volume. Littleton: Society of Economic Geologists, Inc, 2005. 299−336. |
[10] | 许德如, 王力, 肖勇, 等. “石碌式”铁氧化物-铜(金)-钴矿床成矿模式初探[J]. 矿床地质, 2008, 27(6):681-694.XU D R, WANG L, XIAO Y, et al. A preliminary discussion on metallogenic model for Shilu-type iron oxide-copper-gold-cobalt ore deposit[J]. Mineral Deposits, 2008, 27(6):681-694. XU D R, WANG L, XIAO Y, et al. A preliminary discussion on metallogenic model for Shilu-type iron oxide-copper-gold-cobalt ore deposit[J]. Mineral Deposits, 2008, 27(6):681-694. |
[11] | 杨经绥, 白文吉. 甘肃白银厂和青海德尔尼黄铁矿型铜矿与塞浦路斯铜矿的成因对比[J]. 地质与勘探, 1987, 5(5):7-10.YANG J S, BAI W J. A genetic comparison of the Baiyinchang and De’erni pyritic copper deposits with the Cyprus type copper deposits[J]. Geology and Exploration, 1987, 5(5):7-10. YANG J S, BAI W J. A genetic comparison of the Baiyinchang and De’erni pyritic copper deposits with the Cyprus type copper deposits[J]. Geology and Exploration, 1987, 5(5):7-10. |
[12] | Horrall K B, Hagni R D, Kisvarsanyi G. Mafic and ultramafic plutons associated with the New Madrid rift complex: a possible major source of the copper-cobalt-nickel mineralization of Southeast Missouri. Economic Geology[J], 1993, 88: 328–343. |
[13] | 潘彤. 东昆仑成矿带钴矿成矿系列研究[D]. 长春: 吉林大学, 2005.PAN T. Study on the metallogenic series of cobalt deposits in Eastern Kunlun Orogenic belt [D]. Changchun: Jilin University, 2005 PAN T. Study on the metallogenic series of cobalt deposits in Eastern Kunlun Orogenic belt [D]. Changchun: Jilin University, 2005 |
[14] | QIN K Z, ZHANG L C, XIAO W J, et al. Overview of major Au, Cu, Ni and Fe deposits and metallogenic evolution of the eastern Tianshan mountains, Northwestern China. In: Mao J W, Goldfarb R J, Seltmann R, et al. Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan. London: IAGOD Guidebook Series, 2003. 227–248. |
[15] | 惠博, 杨耀辉. 攀西红格矿区橄辉岩型钒钛磁铁矿矿石性质研究及对选矿工艺的影响[J]. 矿产综合利用, 2020(4):126-129.HUI B, YANG Y H. Properties of olive-pyroxene vanadium-titanium magnetite ore in Hongge mining area of Panxi research and influence on mineral processing technology[J]. Multipurpose Utilization of Mineral Resources, 2020(4):126-129. HUI B, YANG Y H. Properties of olive-pyroxene vanadium-titanium magnetite ore in Hongge mining area of Panxi research and influence on mineral processing technology[J]. Multipurpose Utilization of Mineral Resources, 2020(4):126-129. |
[16] | 邓杰, 张渊, 刘飞燕, 等. 钒钛磁铁矿选铁尾矿中硫钴资源综合回收研究[J]. 有色金属(选矿部分), 2015(2):30-33+48.DENG J, ZHANG Y, LIU F Y, et al. Comprehensive recovery of sulfur and cobalt resources in vanadium titanomagnetite beneficiation tailings[J]. NONFERROUS METALS Mineral Processing Section, 2015(2):30-33+48. DENG J, ZHANG Y, LIU F Y, et al. Comprehensive recovery of sulfur and cobalt resources in vanadium titanomagnetite beneficiation tailings[J]. NONFERROUS METALS Mineral Processing Section, 2015(2):30-33+48. |
[17] | HAZEN R M, HYSTAD G, GOLDEN J J, et al. Cobalt mineral ecology[J]. American Mineralogist, 2017, 102(1):108-116. doi: 10.2138/am-2017-5798 |
[18] | ZHANG W, LIU Y, ZHAO W. Occurrence and enrichment of cobalt in ferromanganese nodules from the Western Pacific[J]. Ore Geology Reviews, 2023: 105758. |
XRD of cobalt-rich ore
Characteristics of iron titanium oxide under optical microscope
Characteristics of sulfides under an optical microscope
Characteristics of gangue minerals under optical microscope
Energy spectrum scanning analysis of cobalt-rich minerals