Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2024 Vol. 43, No. 5
Article Contents

SONG Yilong, LIU Min, HOU Kejun. A Review of Research Progress on Separation and Purification Methods of Lithium Isotopes Using Cation Exchange Resin and Their Applications[J]. Rock and Mineral Analysis, 2024, 43(5): 677-692. doi: 10.15898/j.ykcs.202409050181
Citation: SONG Yilong, LIU Min, HOU Kejun. A Review of Research Progress on Separation and Purification Methods of Lithium Isotopes Using Cation Exchange Resin and Their Applications[J]. Rock and Mineral Analysis, 2024, 43(5): 677-692. doi: 10.15898/j.ykcs.202409050181

A Review of Research Progress on Separation and Purification Methods of Lithium Isotopes Using Cation Exchange Resin and Their Applications

More Information
  • Lithium (Li) isotopes serve as effective geochemical tracers in mantle-crust cycling, planetary evolution, climate change, continental weathering, mineralization mechanisms, and environmental pollution studies. Efficient separation of lithium from natural samples is essential due to potential interference from isobaric isotopes during analysis. Over the past decades, cation exchange resin methods have been developed to enhance lithium separation for TIMS and MC-ICP-MS analysis. Since then, these methods have evolved to reduce blank contamination, simplify procedures, improve efficiency, and expand applicability to various natural samples. This review examines recent advances in Li isotope separation using single-column, double-column, multi-column and in-series column methods. Key factors like resin type, eluent volume, and method efficiency for various samples are discussed. Single- and double-column methods dominate current research, of which some methods just use minimal resin and eluent while controlling process blanks to below 0.1‰. However, separation efficiency remains dependent on lithium content and matrix ions in the sample. Further optimization is needed to balance efficiency, cost, and applicability across sample types. As analytical techniques advance, automated elution systems are likely to become central to Li isotope analysis. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202409050181.

  • 加载中
  • [1] Elliott T, Thomas A, Jeffcoate A, et al. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts[J]. Nature, 2006, 443(7111): 565−568. doi: 10.1038/nature05144

    CrossRef Google Scholar

    [2] Liu M C, McKeegan K D, Goswami J N, et al. Isotopic records in CM hibonites: Implications for timescales of mixing of isotope reservoirs in the Solar nebula[J]. Geochimica et Cosmochimica Acta, 2009, 73(17): 5051−5079. doi: 10.1016/j.gca.2009.02.039

    CrossRef Google Scholar

    [3] Huh Y, Chan L H, Edmond J M. Lithium isotopes as a probe of weathering processes: Orinoco River[J]. Earth and Planetary Science Letters, 2001, 194(1-2): 189−199. doi: 10.1016/S0012-821X(01)00523-4

    CrossRef Google Scholar

    [4] Misra S, Froelich P N. Lithium isotope history of cenozoic seawater: Changes in silicate weathering and reverse weathering[J]. Science, 2012, 335(6070): 818. doi: 10.1126/science.1214697

    CrossRef Google Scholar

    [5] Miao W L, Zhang X Y, Li Y L, et al. Lithium and strontium isotopic systematics in the Nalenggele River catchment of Qaidam Basin, China: Quantifying contributions to lithium brines and deciphering lithium behavior in hydrological processes[J]. Journal of Hydrology (Part B), 2022, 614: 128630. doi: 10.1016/j.jhydrol.2022.128630

    CrossRef Google Scholar

    [6] 刘丽君, 王登红, 侯可军, 等. 锂同位素在四川甲基卡新三号矿脉研究中的应用[J]. 地学前缘, 2017, 24(5): 167−171. doi: 10.13745/j.esf.yx.2017-1-16

    CrossRef Google Scholar

    Liu L J, Wang D H, Hou K J, et al. Application of lithium isotope to Jiajika new No. 3 pegmate lithium poly-metallic vein in Sichuan[J]. Earth Science Frontiers, 2017, 24(5): 167−171. doi: 10.13745/j.esf.yx.2017-1-16

    CrossRef Google Scholar

    [7] Choi H B, Ryu J S, Shin W J, et al. The impact of anthropogenic inputs on lithium content in river and tap water[J]. Nature Communications, 2019, 10(1): 5371. doi: 10.1038/s41467-019-13376-y

    CrossRef Google Scholar

    [8] Kaplan L, Wilzbach K E. Lithium isotope determination by neutron activation[J]. Analytical Chemistry, 1954, 26(11): 1797−1798. doi: 10.1021/AC60095A031

    CrossRef Google Scholar

    [9] Meier A L. Determination of lithium isotopes at natural abundance levels by atomic absorption spectrometry[J]. Analytical Chemistry, 1982, 54(13): 2158−2161. doi: 10.1021/ac00250a007

    CrossRef Google Scholar

    [10] Grégoire D C, Acheson B M, Taylor R P. Measurement of lithium isotope ratios by inductively coupled plasma mass spectrometry: Application to geological materials[J]. Journal of Analytical Atomic Spectrometry, 1996, 11(9): 765−772. doi: 10.1039/JA9961100765

    CrossRef Google Scholar

    [11] Chaussidon M, Robert F. 7Li/6Li and 11B/10B variations in chondrules from the Semarkona unequilibrated chondrite[J]. Earth and Planetary Science Letters, 1998, 164(3): 577−589. doi: 10.1016/S0012-821X(98)00250-7

    CrossRef Google Scholar

    [12] Chan L H. Lithium isotope analysis by thermal ionization mass spectrometry of lithium tetraborate[J]. Analytical Chemistry, 1987, 59(22): 2662−2665. doi: 10.1021/AC00149A007

    CrossRef Google Scholar

    [13] Moriguti T, Nakamura E. Precise lithium isotopic analysis by thermal ionization mass spectrometry using lithium phosphate as an ion source material[J]. Proceedings of the Japan Academy, 1993, 69(6): 123−128. doi: 10.2183/PJAB.69.123

    CrossRef Google Scholar

    [14] Tomascak P B, Carlson R W, Shirey S B. Accurate and precise determination of Li isotopic compositions by multi-collector sector ICP-MS[J]. Chemical Geology, 1999, 158(1): 145−154. doi: 10.1016/S0009-2541(99)00022-4

    CrossRef Google Scholar

    [15] Magna T, Wiechert U H, Halliday A N. Low-blank isotope ratio measurement of small samples of lithium using multiple-collector ICP-MS[J]. International Journal of Mass Spectrometry, 2004, 239(1): 67−76. doi: 10.1016/j.ijms.2004.09.008

    CrossRef Google Scholar

    [16] 唐清雨, 陈露, 田世洪, 等. 锂硼同位素MC-ICP-MS分析中的记忆效应研究[J]. 岩矿测试, 2024, 43(2): 201−212. doi: 10.15898/j.ykcs.202310260167

    CrossRef Google Scholar

    Tang Q Y, Chen L, Tian S H, et al. A study on memory effects in lithium and boron isotope analysis using MC-ICPMS[J]. Rock and Mineral Analysis, 2024, 43(2): 201−212. doi: 10.15898/j.ykcs.202310260167

    CrossRef Google Scholar

    [17] Bell D R, Hervig R L, Buseck P R, et al. Lithium isotope analysis of olivine by SIMS: Calibration of a matrix effect and application to magmatic phenocrysts[J]. Chemical Geology, 2009, 258(1): 5−16. doi: 10.1016/j.chemgeo.2008.10.008

    CrossRef Google Scholar

    [18] Martin C, Ponzevera E, Harlow G. In situ lithium and boron isotope determinations in mica, pyroxene, and serpentine by LA-MC-ICP-MS[J]. Chemical Geology, 2015, 412: 107−116. doi: 10.1016/j.chemgeo.2015.07.022

    CrossRef Google Scholar

    [19] Chan L H, Edmond J M. Variation of lithium isotope composition in the marine environment: A preliminary report[J]. Geochimica et Cosmochimica Acta, 1988, 52(6): 1711−1717. doi: 10.1016/0016-7037(88)90239-6

    CrossRef Google Scholar

    [20] Chan L H, Edmond J M, Thompson G, et al. Lithium isotopic composition of submarine basalts: Implications for the lithium cycle in the oceans[J]. Earth and Planetary Science Letters, 1992, 108(1): 151−160. doi: 10.1016/0012-821X(92)90067-6

    CrossRef Google Scholar

    [21] 孙爱德, 肖应凯. 锂同位素质谱法测定及其样品制备研究进展[J]. 盐湖研究, 2001, 9(4): 64−71. doi: 10.3969/j.issn.1008-858X.2001.04.011

    CrossRef Google Scholar

    Sun A D, Xiao Y K. The progress in the isotopic determination of lithium by TIMS and its sample preparation[J]. Journal of Salt Lake Research, 2001, 9(4): 64−71. doi: 10.3969/j.issn.1008-858X.2001.04.011

    CrossRef Google Scholar

    [22] Moriguti T, Nakamura E. High-yield lithium separation and the precise isotopic analysis for natural rock and aqueous samples[J]. Chemical Geology, 1998, 145(1): 91−104. doi: 10.1016/S0009-2541(97)00163-0

    CrossRef Google Scholar

    [23] Chan L H, Edmond J M, Thompson G. A lithium isotope study of hot springs and metabasalts from mid-ocean ridge hydrothermal systems[J]. Journal of Geophysical Research, 1993, 98(B6): 9653. doi: 10.1029/92JB00840

    CrossRef Google Scholar

    [24] Chan L H C, Gieskes J M, You C F, et al. Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas Basin, Gulf of California[J]. Geochimica et Cosmochimica Acta, 1994, 58(20): 4443−4454. doi: 10.1016/0016-7037(94)90346-8

    CrossRef Google Scholar

    [25] 肖应凯, 祁海平, 王蕴慧, 等. 青海大柴达木湖卤水、沉积物和水源水中的锂同位素组成[J]. 地球化学, 1994, 23(4): 329−338. doi: 10.19700/j.0379-1726.1994.04.003

    CrossRef Google Scholar

    Xiao Y K, Qi H P, Wang Y H, et al. Lithium isotopic composition of brine, sediments and source water in Da Qaidam Lake, Qinghai, China[J]. Geochimica, 1994, 23(4): 329−338. doi: 10.19700/j.0379-1726.1994.04.003

    CrossRef Google Scholar

    [26] 汪齐连. 运用MC-ICP-MS测定天然样品的锂同位素组成[D]. 北京: 中国科学院研究生院(地球化学研究所), 2006.

    Google Scholar

    Wang Q L. Measurement of lithium isotope in natural samples using MC-ICP-MS[D]. Beijing: Graduate School of Geochemistry, Chinese Academy of Sciences (Institute of Geochemistry), 2006.

    Google Scholar

    [27] Millot R, Vigier N, Gaillardet J. Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin, Canada[J]. Geochimica et Cosmochimica Acta, 2010, 74(14): 3897−3912. doi: 10.1016/j.gca.2010.04.025

    CrossRef Google Scholar

    [28] Penniston-Dorland S, Liu X M, Rudnick R L. Lithium isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 165−217. doi: 10.2138/rmg.2017.82.6

    CrossRef Google Scholar

    [29] Tomascak P, Magna T, Dohmen R. Advances in lithium isotope geochemistry[M]. Springer International Publishing, 2016.

    Google Scholar

    [30] Hoefs J. Lithium isotope composition of Quaternary and Tertiary biogene carbonates and a global lithium isotope balance[J]. Geochimica et Cosmochimica Acta, 1997, 61(13): 2679−2690. doi: 10.1016/S0016-7037(97)00101-4

    CrossRef Google Scholar

    [31] Zhang X. Sedimentary recycling and chemical weathering: A silicon and lithium isotopes perspective[D]. Paris: Institut du Physique de Globe de Paris, 2018.

    Google Scholar

    [32] 汪齐连, 赵志琦, 刘丛强, 等. 天然样品中锂的分离及其同位素比值的测定[J]. 分析化学, 2006, 34(6): 764−768. doi: 10.3321/j.issn:0253-3820.2006.06.005

    CrossRef Google Scholar

    Wang Q L, Zhao Z Q, Liu C Q, et al. Separation and determination of lithium in natural samples[J]. Chinese Journal of Analytical Chemistry, 2006, 34(6): 764−768. doi: 10.3321/j.issn:0253-3820.2006.06.005

    CrossRef Google Scholar

    [33] Bouman C, Elliott T, Vroon P Z. Lithium inputs to subduction zones[J]. Chemical Geology, 2004, 212(1): 59−79. doi: 10.1016/j.chemgeo.2004.08.004

    CrossRef Google Scholar

    [34] Dellinger M, Joshua West A, Paris G, et al. The Li isotope composition of marine biogenic carbonates: Patterns and mechanisms[J]. Geochimica et Cosmochimica Acta, 2018, 236: 315−335. doi: 10.1016/j.gca.2018.03.014

    CrossRef Google Scholar

    [35] Murphy J G, Ahm A S C, Swart P K, et al. Reconstructing the lithium isotopic composition (δ7Li) of seawater from shallow marine carbonate sediments[J]. Geochimica et Cosmochimica Acta, 2022, 337: 140−154. doi: 10.1016/j.gca.2022.09.019

    CrossRef Google Scholar

    [36] Yang C, Vigier N, Yang S, et al. Clay Li and Nd isotopes response to hydroclimate changes in the Changjiang (Yangtze) Basin over the past 14,000 years[J]. Earth and Planetary Science Letters, 2021, 561: 116793. doi: 10.1016/j.jpgl.2021.116793

    CrossRef Google Scholar

    [37] Schonbachler M, Fehr M A. Basic of ion exchange chromatography for selected geological applications[M].Treatise on Geochemistry (2nd Edition). 2014.

    Google Scholar

    [38] 石雅静. 地质样品中钼同位素的自动化分离富集方法研究[D]. 成都: 成都理工大学, 2020.

    Google Scholar

    Shi Y J. Automatic separation and enrichment of molybdenum isotopes in geological samples[D]. Chengdu: Chengdu University of Technology, 2020.

    Google Scholar

    [39] 苏嫒娜, 李真真, 田世洪, 等. MC-ICP-MS高精度测定Li同位素分析方法[J]. 矿床地质, 2010, 29(S1): 835−836. doi: 10.16111/j.0258-7106.2010.s1.393

    CrossRef Google Scholar

    Su Y N, Li Z Z, Tian S H, et al. High-precision measurement of lithium isotopes using MC-ICP-MS[J]. Mineral Deposits, 2010, 29(S1): 835−836. doi: 10.16111/j.0258-7106.2010.s1.393

    CrossRef Google Scholar

    [40] 蔺洁, 刘勇胜, 胡兆初, 等. MC-ICP-MS准确测定地质样品中锂同位素组成[J]. 矿物岩石地球化学通报, 2016, 35(3): 458−463. doi: 10.3969/j.issn.1007-2802.2016.03.008

    CrossRef Google Scholar

    Lin J, Liu Y S, Hu Z C, et al. Accurate analysis of lithium isotopic composition of geological samples by MC-ICP-MS[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(3): 458−463. doi: 10.3969/j.issn.1007-2802.2016.03.008

    CrossRef Google Scholar

    [41] Nishio Y, Nakai S I. Accurate and precise lithium isotopic determinations of igneous rock samples using multi-collector inductively coupled plasma mass spectrometry[J]. Analytica Chimica Acta, 2002, 456(2): 271−281. doi: 10.1016/S0003-2670(02)00042-9

    CrossRef Google Scholar

    [42] Misra S, Froelich P N. Measurement of lithium isotope ratios by quadrupole-ICP-MS: Application to seawater and natural carbonates[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(11): 1524−1533. doi: 10.1039/B907122A

    CrossRef Google Scholar

    [43] Lin J, Liu Y, Hu Z, et al. Accurate determination of lithium isotope ratios by MC-ICP-MS without strict matrix-matching by using a novel washing method[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(2): 390−397. doi: 10.1039/C5JA00231A

    CrossRef Google Scholar

    [44] 张俊文, 孟俊伦, 赵志琦, 等. 多接收电感耦合等离子质谱法准确测定天然地质样品中的锂同位素组成[J]. 分析化学, 2019, 47(3): 415−422. doi: 10.19756/j.issn.0253-3820.181444

    CrossRef Google Scholar

    Zhang J W, Meng J L, Zhao Z Q, et al. Accurate determination of lithium isotopic compositions in geological samples by multi-collector inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 415−422. doi: 10.19756/j.issn.0253-3820.181444

    CrossRef Google Scholar

    [45] Zhu G, Ma J, Wei G, et al. A rapid and simple method for lithium purification and isotopic analysis of geological reference materials by MC-ICP-MS[J]. Frontiers in Chemistry, 2020, 8: 557489. doi: 10.3389/fchem.2020.557489

    CrossRef Google Scholar

    [46] James R H, Palmer M R. The lithium isotope composition of international rock standards[J]. Chemical Geology, 2000, 166(3): 319−326. doi: 10.1016/S0009-2541(99)00217-X

    CrossRef Google Scholar

    [47] Gao Y, Casey J F. Lithium isotope composition of ultramafic geological reference materials JP-1 and DTS-2[J]. Geostandards and Geoanalytical Research, 2012, 36(1): 75−81. doi: 10.1111/j.1751-908X.2011.00117.x

    CrossRef Google Scholar

    [48] Li W, Liu X M, Godfrey L V. Optimisation of lithium chromatography for isotopic analysis in geological reference materials by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2019, 43(2): 261−276. doi: 10.1111/ggr.12254

    CrossRef Google Scholar

    [49] Li X, Han G, Zhang Q, et al. Accurate lithium isotopic analysis of twenty geological reference materials by multi-collector inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, 188: 106348. doi: 10.1016/j.sab.2021.106348

    CrossRef Google Scholar

    [50] 赵悦, 侯可军, 田世洪, 等. 常用锂同位素地质标准物质的多接收器电感耦合等离子体质谱分析研究[J]. 岩矿测试, 2015, 34(1): 28−39. doi: 10.15898/j.cnki.11-2131/td.2015.01.006

    CrossRef Google Scholar

    Zhao Y, Hou K J, Tian S H, et al. Study on measurements of lithium isotopic compositions for common standard reference materials using multi-collector inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2015, 34(1): 28−39. doi: 10.15898/j.cnki.11-2131/td.2015.01.006

    CrossRef Google Scholar

    [51] Zhu Z, Yang T, Zhu X. Achieving rapid analysis of Li isotopes in high-matrix and low-Li samples with MC-ICP-MS: New developments in sample preparation and mass bias behavior of Li in the ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(7): 1503−1513. doi: 10.1039/C9JA00076C

    CrossRef Google Scholar

    [52] Gou L F, Jin Z D, Pogge von Strandmann P A E, et al. Li isotopes in the middle Yellow River: Seasonal variability, sources and fractionation[J]. Geochimica et Cosmochimica Acta, 2019, 248: 88−108. doi: 10.1016/j.gca.2019.01.007

    CrossRef Google Scholar

    [53] Ma T, Weynell M, Li S L, et al. Lithium isotope compositions of the Yangtze River headwaters: Weathering in high-relief catchments[J]. Geochimica et Cosmochimica Acta, 2020, 280: 46−65. doi: 10.1016/j.gca.2020.03.029

    CrossRef Google Scholar

    [54] Zhu G, Ma J, Wei G, et al. Lithium isotope fractionation during the weathering of granite: Responses to pH[J]. Geochimica et Cosmochimica Acta, 2023, 345: 117−129. doi: 10.1016/j.gca.2022.12.028

    CrossRef Google Scholar

    [55] Alistair B, Jeffcoate T E, Thomas A, et al. Precise, small sample size determinations of lithium isotopic compositions of geological reference materials and modern seawater by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2004, 28(1): 161−172. doi: 10.1111/j.1751-908X.2004.tb01053.x

    CrossRef Google Scholar

    [56] Bohlin M S, Misra S, Lloyd N, et al. High-precision determination of lithium and magnesium isotopes utilising single column separation and multi-collector inductively coupled plasma mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2018, 32(2): 93−104. doi: 10.1002/rcm.8020

    CrossRef Google Scholar

    [57] 宋以龙. 我国大型河流流域硅酸盐岩风化过程的锂同位素制约[D]. 天津: 天津大学, 2021.

    Google Scholar

    Song Y L. Continental silicate weathering processes traced by Li isotopes in Chinese large rivers[D]. Tianjin: Tianjin University, 2021.

    Google Scholar

    [58] Rudnick R L, Tomascak P B, Njo H B, et al. Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina[J]. Chemical Geology, 2004, 212(1): 45−57. doi: 10.1016/j.chemgeo.2004.08.008

    CrossRef Google Scholar

    [59] 李超, 王登红, 屈文俊, 等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658−669. doi: 10.15898/j.cnki.11-2131/td.201907310115

    CrossRef Google Scholar

    Li C, Wang D H, Qu W J, et al. A review and perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658−669. doi: 10.15898/j.cnki.11-2131/td.201907310115

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(4)

Article Metrics

Article views(551) PDF downloads(215) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint