2023 Vol. 43, No. 1
Article Contents

ZHU Weipeng. 2023. Sedimentary characteristics and metallogenic mechanism of Ningxiang-type iron deposits in South China. Sedimentary Geology and Tethyan Geology, 43(1): 87-100. doi: 10.19826/j.cnki.1009-3850.2021.07002
Citation: ZHU Weipeng. 2023. Sedimentary characteristics and metallogenic mechanism of Ningxiang-type iron deposits in South China. Sedimentary Geology and Tethyan Geology, 43(1): 87-100. doi: 10.19826/j.cnki.1009-3850.2021.07002

Sedimentary characteristics and metallogenic mechanism of Ningxiang-type iron deposits in South China

  • Ningxiang-type iron deposit is the most representative sedimentary iron deposit in South China. In order to explore sedimentary characteristics and metallogenic mechanism of Ningxiang-type iron deposit, the ore samples from northeastern Guangxi and western Hubei are selected for petrological and sedimentological research with the help of polarizing optical microscope, scanning electron microscope and TESCAN integrated mineral analyzer. The microfabric and geochemical characteristics of iron ooids are deeply studied. The results show that Ningxiang-type iron deposit is a kind of hybrid sedimentary with typical oolitic texture, which can be divided into three types: Sandstone-type, limestone-type and mixed-type. It occurs in the Middle Devonian Xindu Formation, the Upper Devonian Huangjiadeng Formation and Xiejingsi Formation. The ore-bearing rock series are generally composed of sandstone, mud, shale and marl, which are formed in the coastal and coastal-shallow transitional zone on the background of regional transgression. The iron oolites in ore samples have various morphologies, and the particle size is mostly concentrated between 0.2 mm and 0.5 mm. The distribution of the mineral phases and major elements in some iron oolites is of annular layers. The core of these iron oolites can be filled with quartz or bioclastics, and the outer annular layers are composed of hematite, chamosite and collophane zones. The study suggests that the forming process of iron ores can be divided into three stages: The preparation period of ore-forming materials, the formation period of iron ooids, and the deposition period of iron ores. Strong paleoterrestrial weathering provides the source of ore-forming materials. The ore-forming materials are enriched and precipitated by mechanical sedimentation, colloidal chemical sedimentation and biological sedimentation, which have experienced a complex redox process. Finally, they are compacted and consolidated into Ningxiang-type iron deposits.

  • 加载中
  • [1] 白云山, 邹先武, 崔森, 等, 2011. 广西灌阳地区泥盆系[J]. 华南地质(原华南地质与矿产), 27(3): 250-258

    Google Scholar

    Bai Y S, Zou X W, Cui S, et al. , 2011. Devonian of Guangyang area, Guangxi Province[J]. South China Geology, 27(3): 250-258. (in Chinese with English abstract)

    Google Scholar

    [2] Baioumy H, Omran M, Fabritius T, 2017. Mineralogy, geochemistry and the origin of high-phosphorus oolitic iron ores of Aswan, Egypt[J]. Ore Geology Review, 80: 185-199. doi: 10.1016/j.oregeorev.2016.06.030

    CrossRef Google Scholar

    [3] 边效曾, 1958. 铁矿的普查与勘探[M]. 北京: 地质出版社, 1−189

    Google Scholar

    Bian X Z, 1958. General prospecting and exploration of iron ore[M]. Beijing: Geological Publishing House, 1−189. (in Chinese)

    Google Scholar

    [4] Borchert H, 1960. Genesis of marine sedimentary iron ores[J]. Transactions of the Institution of Mining and Metallurgy, 69: 261-279.

    Google Scholar

    [5] Burkhalter R M, 1995. Ooidal ironstones and ferruginous microbialites: origin and relation to sequence stratigraphy (Aalenian and Bajocian, Swiss Jura Mountains)[J]. Sedimentology, 42(1): 57-74. doi: 10.1111/j.1365-3091.1995.tb01271.x

    CrossRef Google Scholar

    [6] 柴辛娜, 李明, 金振民, 等, 2011. 鄂西晚泥盆世含磷鲕状铁矿石中磷的赋存状态与形成[J]. 地球科学(中国地质大学学报), 36(3): 440-454

    Google Scholar

    Chai X N, Li M, Jin Z M, et al. , 2011. Occurrence and formation of phosphorus in Late Devonian phosphate-bearing ooidal ironstones from western Hubei, China[J]. Earth Science (Journal of China University of Geosciences), 36(3): 440-454. (in Chinese with English abstract)

    Google Scholar

    [7] 陈代钊和陈其英, 1994. 华南泥盆纪沉积演化及海水进退规程[J]. 地质科学, 29(3): 246-255

    Google Scholar

    Chen D Z and Chen Q Y, 1994. Devonian sedimentary evolution and transgression-regression patterns in South China[J]. Chinese Journal of Geology, 29(3): 246-255. (in Chinese with English abstract)

    Google Scholar

    [8] 陈志明, 1992. 沉积铁矿形成过程中的生物作用[J]. 地球科学进展, 7(6): 56-59

    Google Scholar

    Chen Z M, 1992. Organic action in the forming process of sedimentary iron ore[J]. Advance in Earth Sciences, 7(6): 56-59. (in Chinese with English abstract)

    Google Scholar

    [9] 程裕淇, 赵一鸣, 陆松年, 1978. 中国几组主要铁矿类型[J]. 地质学报, 52(4): 253-268

    Google Scholar

    Cheng Y Q, Zhao Y M, Lu S N, 1978. Main type-groups of iron deposits of China[J]. Acta Geologica Sinica, 52(4): 253-268. (in Chinese with English abstract)

    Google Scholar

    [10] 程裕淇, 赵一鸣, 林文蔚, 1994. 中国铁矿床[M]. 北京: 地质出版社, 386−479

    Google Scholar

    Cheng Y Q, Zhao Y M, Lin W W, 1994. Iron deposits in China[M]. Beijing: Geological Publishing House, 386−479. (in Chinese)

    Google Scholar

    [11] 崔立伟, 夏浩东, 王聪, 等, 2012. 中国铁矿资源现状与铁矿实物地质资料筛选[J]. 地质与勘探, 48(5): 894-905

    Google Scholar

    Cui L W, Xia H D, Wang C, et al. , 2012. Current status of iron-ore resources in China and screening of object iron-ore geological data[J]. Geology and Prospecting, 48(5): 894-905. (in Chinese with English abstract)

    Google Scholar

    [12] Dalstra H, Guedes S, 2004. Giant hydrothermal hematite deposits with Mg-Fe metasomatism: a comparison of the Carajás, Hamersley, and other iron ores[J]. Economic Geology, 99(8): 1793-1800. doi: 10.2113/gsecongeo.99.8.1793

    CrossRef Google Scholar

    [13] Diab H, Chouabbi A, Fru E C, et al. , 2020. Mechanism of formation, mineralogy and geochemistry of the ooidal ironstone of Djebel Had, Northeast Algeria[J]. Journal of African Earth Sciences, 162: 16.

    Google Scholar

    [14] 段其发, 2014. 湘西—鄂西地区震旦系—寒武系层控铅锌矿成矿规律研究[D]. 博士学位论文. 武汉: 中国地质大学, 1−183

    Google Scholar

    Duan Q F, 2014. The research of metallogenic regularity of stritabound zinc−lead deposits from Sinian−Cambrian in western Hunan and western Hubei[D]. Doctoral Degree Thesis. Wuhan: China University of Geosciences, 1−183(in Chinese with English abstract)

    Google Scholar

    [15] 傅家谟, 1959. 鄂西宁乡式铁矿的形成和分布规律[J]. 地质科学, 2(4): 109-115

    Google Scholar

    Fu J M, 1959. Formation and distribution of Ningxiang-type iron ore in western Hubei[J]. Chinese Journal of Geology, 2(4): 109-115. (in Chinese with English abstract)

    Google Scholar

    [16] 傅家谟, 1961. 鄂西宁乡式铁矿的相与成因[J]. 地质学报, 41(2): 112-128+233-234

    Google Scholar

    Fu J M, 1961. Facies and genesis of sedimentary iron deposits of Ningxiang-type, western Hubei[J]. Acta Geologica Sinica, 41(2): 112-128+233-234. (in Chinese with English abstract)

    Google Scholar

    [17] Garrels R M, Thompson M E, 1960. Oxidation of pyrite by iron sulfate solutions[J]. American Journal of Science, 258: 57-67.

    Google Scholar

    [18] 广西壮族自治区地质矿产局, 1985. 广西壮族自治区区域地质志[M]. 北京: 地质出版社, 97−155

    Google Scholar

    Guangxi Zhuang Autonomous Region Bureau of Geology and Mineral Resources. Regional geology of Guangxi Zhuang Autonomous Region[M]. Beijing: Geological Publishing House, 97−155. (in Chinese)

    Google Scholar

    [19] 贺爱平, 秦元奎, 姚敬劬, 等, 2012. 鄂西宁乡式铁矿物质组成研究[J]. 资源环境与工程, 26(6): 557-565 doi: 10.3969/j.issn.1671-1211.2012.06.002

    CrossRef Google Scholar

    He A P, Qin Y K, Yao J Q, et al. , 2012. Study of material composition of Ningxiang-type iron in western Hubei[J]. Resources Environment and Engineering, 26(6): 557-565. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1211.2012.06.002

    CrossRef Google Scholar

    [20] Hrstka T, Gottlieb P, Skála R, et al. , 2018. Automated mineralogy and petrology-applications of TESCAN integrated mineral analyzer (TIMA)[J]. Journal of Geosciences, 63: 47-63.

    Google Scholar

    [21] 湖北省地质矿产局, 1990. 湖北省区域地质志[M]. 北京: 地质出版社, 128−140+264−341

    Google Scholar

    Hubei Geology and Mineral Resources Bureau, 1990. Regional geology of Hubei Province[M]. Beijing: Geological Publishing House, 128−140+264−341. (in Chinese)

    Google Scholar

    [22] 胡宁和徐安武, 1998. 鄂西宁乡式铁矿分布层位岩相特征与成因探讨[J]. 地质找矿论丛, 13(1): 40-47

    Google Scholar

    Hu N and Xu A W, 1998. Horizon, lithofacies and genesis of the Ningxiang-type iron deposit in western Hubei, China[J]. Contributions to Geology and Mineral Resources Research, 13(1): 40-47. (in Chinese with English abstract)

    Google Scholar

    [23] 黄福喜, 2011. 中上扬子克拉通盆地沉积层序充填过程与演化模式[D]. 博士学位论文. 成都: 成都理工大学, 1−165

    Google Scholar

    Huang F X, 2011. Filling process and evolutionary model of sedimentary sequence in middle−upper Yangtze cratonic basin[D]. Doctoral Degree Thesis. Chengdu: Chengdu University of Technology, 1−165. (in Chinese)

    Google Scholar

    [24] 惠博, 2014. 鄂西宁乡式铁矿沉积特征及成因[D]. 博士学位论文. 成都: 成都理工大学, 1−161

    Google Scholar

    Hui B, 2014. The sedimentary characteristics and genesis of the Ningxiang−type iron ore in the west of Hubei Province[D]. Doctoral Degree Thesis. Chengdu: Chengdu University of Technology, 1−161. (in Chinese with English abstract)

    Google Scholar

    [25] Knox R W O, 1970. Chamosite ooliths from the Winter Gill ironstone (Jurassic) of Yorkshire, England[J]. Journal of Sedimentary Petrology, 40(4): 1216-1225.

    Google Scholar

    [26] 李朋威, 周川闽, 金廷福, 等, 2013. 太原西山七里沟剖面本溪组铁质鲕粒成因探讨[J]. 沉积学报, 31(3): 396-403 doi: 10.14027/j.cnki.cjxb.2013.03.001

    CrossRef Google Scholar

    Li P W, Zhou C M, Jin T F, et al. , 2013. Origin of the ferriferous ooids in the Benxi Formation at the Qiligou section, Taiyuan Xishan[J]. Acta Sedimentologica Sinica, 31(3): 396-403. (in Chinese with English abstract) doi: 10.14027/j.cnki.cjxb.2013.03.001

    CrossRef Google Scholar

    [27] 廖士范, 1964. 中国宁乡式铁矿的岩相古地理条件及其成矿规律的探讨[J]. 地质学报, 44(1): 68-80

    Google Scholar

    Liao S F, 1964. A study on the paleogeographic-lithologic facies and the metallogensis of the Ningxiang-type of iron ores[J]. Acta Geologica Sinica, 44(1): 68-80. (in Chinese with English abstract)

    Google Scholar

    [28] 廖士范, 魏梁鸿, 刘成德, 等, 1993. 中国泥盆纪鲕铁石沉积环境、成因[J]. 沉积学报, 11(1): 93-102 doi: 10.14027/j.cnki.cjxb.1993.01.011

    CrossRef Google Scholar

    Liao S F, Wei L H, Liu C D, et al. , 1993. Sedimentary environments and origin of the Devonian oolitic ironstones in China[J]. Acta Sedimentologica Sinica, 11(1): 93-102. (in Chinese with English abstract) doi: 10.14027/j.cnki.cjxb.1993.01.011

    CrossRef Google Scholar

    [29] 刘宝珺, 许效松, 徐强, 等, 1990. 东秦岭柞水—镇安地区泥盆纪沉积环境和沉积盆地演化[J]. 沉积学报, 8(4): 3-12 doi: 10.14027/j.cnki.cjxb.1990.04.001

    CrossRef Google Scholar

    Liu B J, Xu X S, Xu Q, et al. , 1990. Devonian sedimentary environments and basin evolution in Zhashui-Zhen’an district, eastern Qinling, China[J]. Acta Sedimentologica Sinica, 8(4): 3-12. (in Chinese with English abstract) doi: 10.14027/j.cnki.cjxb.1990.04.001

    CrossRef Google Scholar

    [30] 刘云勇, 贺爱平, 秦元奎, 等, 2017. 中国宁乡式铁矿[M]. 北京: 冶金工业出版社, 13−62

    Google Scholar

    Liu Y Y, He A P, Qin Y K, et al. , 2017. Ningxiang−type iron mine in China[M]. Beijing: Metallurgical Industry Press, 13−62. (in Chinese)

    Google Scholar

    [31] McGhee G R, 1996. The Late Devonian mass extinction−the Frasnian−Famennian crisis[M]. New York: Columbia University Press, 1−327.

    Google Scholar

    [32] Mücke A, Farshad F, 2005. Whole-rock and mineralogical composition of Phanerozoic ooidal ironstones: comparison and differentiation of types and subtypes[J]. Ore Geology Reviews, 26(3-4): 227-262. doi: 10.1016/j.oregeorev.2004.08.001

    CrossRef Google Scholar

    [33] Mücke A, 2006. Chamosite, siderite and the environmental conditions of their formation in chamosite-type Phanerozoic ooidal ironstones[J]. Ore Geology Reviews, 28(2): 235-249. doi: 10.1016/j.oregeorev.2005.03.004

    CrossRef Google Scholar

    [34] 倪子尧, 徐绪东, 陈政安, 等, 2019. 龙门山地区北川石沟里泥盆系养马坝组铁质鲕粒沉积及其环境分析[J]. 沉积学报, 37(4): 702-712 doi: 10.14027/j.issn.1000-0550.2018.181

    CrossRef Google Scholar

    Ni Z Y, Xu X D, Chen Z A, et al. , 2019. The oolitic iron deposits and environmental analysis of the Devonian Yangmaba Formation in the Shigouli profile, Beichuan County, Longmenshan area[J]. Acta Sedimentologica Sinica, 37(4): 702-712. (in Chinese with English abstract) doi: 10.14027/j.issn.1000-0550.2018.181

    CrossRef Google Scholar

    [35] 彭三国, 2010. 湘鄂桂地区“宁乡式”铁矿成矿地质特征与找矿前景[J]. 矿床地质, 29(S1): 101-102 doi: 10.16111/j.0258-7106.2010.s1.061

    CrossRef Google Scholar

    Peng S G, 2010. Geological characteristics and prospecting prospect of Ningxiang-type iron deposits in Hunan, Hubei and Guangxi areas [J]. Mineral Deposits, 29(S1): 101-102. doi: 10.16111/j.0258-7106.2010.s1.061

    CrossRef Google Scholar

    [36] Qie W, Liu J, Chen J, et al. , 2015. Local overprints on the global carbonate δ13C signal in Devonian-Carboniferous boundary successions of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 418: 290-303.

    Google Scholar

    [37] Qie W, Algeo T J, Luo G, et al. , 2019. Global events of the Late Paleozoic (Early Devonian to Middle Permian): a review[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 531: 109-259.

    Google Scholar

    [38] 秦延文和张曼平, 1998. 海洋中铁的来源、形态和对初级生产力的限制作用[J]. 海洋科学进展, 16(3): 67-75

    Google Scholar

    Qin Y W and Zhang M P, 1998. Iron sources, existing forms and their limiting action on the primary productivity of phytoplankton in seawater[J]. Advances in Marine Science, 16(3): 67-75. (in Chinese with English abstract)

    Google Scholar

    [39] 秦元奎, 杨宏伟, 吴义松, 等, 2013. 鄂西沉积铁矿含矿盆地分析[J]. 资源环境与工程, 27(6): 741-748 doi: 10.16536/j.cnki.issn.1671-1211.2013.06.001

    CrossRef Google Scholar

    Qin Y K, Yang H W, Wu Y S, et al. , 2013. Analysis of basin bearing sedimentary iron deposits in western Hubei[J]. Resources Environment and Engineering, 27(6): 741-748. (in Chinese with English abstract) doi: 10.16536/j.cnki.issn.1671-1211.2013.06.001

    CrossRef Google Scholar

    [40] 秦元奎和姚敬劬, 2014. 鄂西泥盆纪沉积铁矿含矿建造分析[J]. 资源环境与工程, 28(2): 132-137 doi: 10.3969/j.issn.1671-1211.2014.02.004

    CrossRef Google Scholar

    Qin Y K and Yao J Q, 2014. Analysis of Devonian sedimentary formation bearing iron ore, western Hubei[J]. Resources Environment and Engineering, 28(2): 132-137. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1211.2014.02.004

    CrossRef Google Scholar

    [41] 秦元奎, 边敏, 杨宏伟, 等, 2015. 鄂西泥盆纪沉积铁矿成矿岩相古地理条件分析[J]. 资源环境与工程, 29(2): 132-139 doi: 10.3969/j.issn.1671-1211.2015.02.007

    CrossRef Google Scholar

    Qin Y K, Bian M, Yang H W, et al. , 2015. Analysis of lithofacies paleogeography forming Devonian sedimentary iron ore, western Hubei[J]. Resources Environment and Engineering, 29(2): 132-139. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1211.2015.02.007

    CrossRef Google Scholar

    [42] 丘达光, 1991. 广西“宁乡式”铁矿中绿泥石鲕粒的特征及成因[J]. 矿物岩石地球化学通报, 10(3): 146-148

    Google Scholar

    Qiu D G, 1991. Characteristics and genesis of chlorite oolitic in “Ningxiang-type” iron ore in Guangxi[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 10(3): 146-148. (in Chinese with English abstract)

    Google Scholar

    [43] 丘达光, 1991. 桂东北“宁乡式”铁矿中赤铁矿鲕粒成因的新认识[J]. 矿物岩石地球化学通报, 10(3): 148-150

    Google Scholar

    Qiu D G, 1991. New understanding of the origin of hematite oolitic in “Ningxiang-type” iron ore in northeast Guangxi[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 10(3): 148-150. (in Chinese with English abstract)

    Google Scholar

    [44] Rahiminejad A H, Zand-Moghadam H, 2018. Synsedimentary formation of ooidal ironstone: an example from the Jurassic deposits of SE central Iran[J]. Ore Geology Reviews, 95: 238-257. doi: 10.1016/j.oregeorev.2018.02.028

    CrossRef Google Scholar

    [45] Salama W, El Aref M, Gaupp R, et al. , 2014. Facies analysis and palaeoclimatic significance of ironstones formed during the Eocene greenhouse[J]. Sedimentology, 61(6): 1594-1624. doi: 10.1111/sed.12106

    CrossRef Google Scholar

    [46] 斯小华, 刘林, 夏循茂, 2021. 鄂西沉积型赤铁矿含矿沉积盆地与成矿作用分析[J]. 西北地质, 54(1): 147-157 doi: 10.19751/j.cnki.61-1149/p.2021.01.012

    CrossRef Google Scholar

    Si X H, Liu L, Xia X M, 2021. Analysis of ore-bearing sedimentary basins and mineralization of sedimentary hematite in western Hubei[J]. Northwestern Geology, 54(1): 147-157. (in Chinese with English abstract) doi: 10.19751/j.cnki.61-1149/p.2021.01.012

    CrossRef Google Scholar

    [47] Taylor K G, Simo J A, Yocum D, et al. , 2002. Stratigraphic significance of ooidal ironstones from the Cretaceous western interior seaway: the Peace River Formation, Alberta, Canada, and the Castlegate Sandstone, Utah, U. S. A[J]. Journal of Sedimentary Research, 72(2): 316-327. doi: 10.1306/060801720316

    CrossRef Google Scholar

    [48] 丁格兰, 1924. 中国铁矿志[M]. 谢家荣译. 北京: 农商部地质调查所, 17−35+78−81

    Google Scholar

    Tengengren F R, 1924. Records of China’s iron ore deposits[M]. Trans. Xie J R. Beijing: Geological Survey Institute of Ministry of Agriculture and Commerce, 17−35+78−81. (in Chinese)

    Google Scholar

    [49] Thomas J, Algeo T J, Stephen E, et al. , 1998. Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 353(1365): 113-130. doi: 10.1098/rstb.1998.0195

    CrossRef Google Scholar

    [50] 田江飞, 田景春, 朱迎堂, 等, 2010. 内蒙古阿尔山地区泥盆系塔尔巴格特组沉积相研究[J]. 沉积与特提斯地质, 30(4): 66-71 doi: 10.3969/j.issn.1009-3850.2010.04.010

    CrossRef Google Scholar

    Tian J F, Tian J C, Zhu Y T, et al. , 2010. Sedimentary facies of the Devonian Tarbaget Formation in the Arxan region, Inner Mongol[J]. Sedimentary Geology and Tethyan Geology, 30(4): 66-71. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-3850.2010.04.010

    CrossRef Google Scholar

    [51] Utescher T, 1992. A sedimentological study of Fe-oolite bearing carbonate rocks at the Lower-Middle Devonian boundary in the Western Rhenish Schiefergebirge[J]. Neues Jahrbuch fuer Geologie und Palaeontologie Monatshefte, (5): 303-320.

    Google Scholar

    [52] Van Houten F B, 1985. Oolitic ironstones and contrasting Ordovician and Jurassic paleogeography[J]. Geology, 13(10): 722-724. doi: 10.1130/0091-7613(1985)13<722:OIACOA>2.0.CO;2

    CrossRef Google Scholar

    [53] Van Houten F B, 1992. Review of Cenozoic ooidal ironstones[J]. Sedimentary Geology, 78(1-2): 101-110. doi: 10.1016/0037-0738(92)90115-8

    CrossRef Google Scholar

    [54] 万传辉, 王莎莎, 刘林, 等, 2020. 鄂西宁乡式铁矿地质特征及成矿作用、成矿模式总结[J]. 资源环境与工程, 34(S2): 45-51 doi: 10.16536/j.cnki.issn.1671-1211.2020.S2.008

    CrossRef Google Scholar

    Wan C H, Wang S S, Liu L, et al. , 2020. Geological characteristics, metallogenesis and metallogenic model of Ningxiang-type iron deposit in western Hubei[J]. Resources Environment and Engineering, 34(S2): 45-51. doi: 10.16536/j.cnki.issn.1671-1211.2020.S2.008

    CrossRef Google Scholar

    [55] 王鸿祯, 楚旭春, 刘本培, 等, 1985. 中国古地理图集[M]. 北京: 地图出版社, 1−143

    Google Scholar

    Wang H Z, Chu X C, Liu B P, et al. , 1985. Atlas of the palaeogeography of China[M]. Beijing: Cartographic Publishing House, 1−143. (in Chinese with English abstract)

    Google Scholar

    [56] 许效松, 牟传龙, 林明, 1994. 中国南方泥盆纪板内盆地层序地层与控矿[J]. 沉积学报, 12(1): 1-7 doi: 10.14027/j.cnki.cjxb.1994.01.001

    CrossRef Google Scholar

    Xu X S, Mu C L, Lin M, 1994. Sequence stratigraphy of Devonian and it controls deposits in intraplate basin, South China[J]. Acta Sedimentologica Sinica, 12(1): 1-7. (in Chinese with English abstract) doi: 10.14027/j.cnki.cjxb.1994.01.001

    CrossRef Google Scholar

    [57] 闫斌, 孙剑, 朱祥坤, 2015. Fe同位素对宁乡式铁矿成因的制约[J]. 地质学报, 89(S1): 217-218 doi: 10.1111/1755-6724.12303_28

    CrossRef Google Scholar

    Yan B, Sun J, Zhu X K, 2015. The restriction of Fe isotopes on the genesis of the Ningxiang-type iron deposits[J]. Acta Geologica Sinica, 89(S1): 217-218. (in Chinese with English abstract) doi: 10.1111/1755-6724.12303_28

    CrossRef Google Scholar

    [58] 尹福光, 许效松, 万方, 等, 2001. 华南地区加里东期前陆盆地演化过程中的沉积响应[J]. 地球学报, 22(5): 425-428 doi: 10.3321/j.issn:1006-3021.2001.05.009

    CrossRef Google Scholar

    Yin F G, Xu X S, Wan F, et al. , 2001. The sedimentary response to the evolutionary process of Caledonian foreland basin system in South China[J]. Acta Geoscientica Sinica, 22(5): 425-428. (in Chinese with English abstract) doi: 10.3321/j.issn:1006-3021.2001.05.009

    CrossRef Google Scholar

    [59] 曾允孚, 1993. 中国南方泥盆纪岩相古地理与成矿作用[M]. 北京: 地质出版社, 120−123

    Google Scholar

    Zeng Y F, 1993. Devonian lithofacies paleogeography[M]. Beijing: Geological Publishing House, 120−123. (in Chinese)

    Google Scholar

    [60] 翟裕生, 袁见齐, 1990. 矿床学[M]. 北京: 地质出版社, 235−239

    Google Scholar

    Zhai Y S, Yuan J Q, 1990. Ore Deposit Geology[M]. Beijing: Geological Publishing House, 235−239. (in Chinese)

    Google Scholar

    [61] 张扬, 郄文昆, 李益龙, 等, 2009. 四川龙门山石炭纪鲕状赤铁矿及其古环境意义[J]. 岩石矿物学杂志, 28(1): 51-57 doi: 10.3969/j.issn.1000-6524.2009.01.007

    CrossRef Google Scholar

    Zhang Y, Qie W K, Li Y L, et al. , 2009. Carboniferous oolitic hematite in Longmenshan area of Sichuan Province and its paleoenvironmental significance[J]. Acta Petrologica et Mineralogica, 28(1): 51-57. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6524.2009.01.007

    CrossRef Google Scholar

    [62] 赵宏军, 陈秀法, 何学洲, 等, 2018. 全球铁矿床主要成因类型特征与重要分布区带研究[J]. 中国地质, 45(5): 890-919 doi: 10.12029/gc20180502

    CrossRef Google Scholar

    Zhao H J, Chen X F, He X Z, et al. , 2018. A study of genetic type characteristics and important distribution zones of global iron deposits[J]. Geology in China, 45(5): 890-919. (in Chinese with English abstract) doi: 10.12029/gc20180502

    CrossRef Google Scholar

    [63] 赵一鸣和毕承思, 2000. 宁乡式沉积铁矿床的时空分布和演化[J]. 矿床地质, 19(4): 350-362 doi: 10.3969/j.issn.0258-7106.2000.04.008

    CrossRef Google Scholar

    Zhao Y M and Bi C S, 2000. Time-space distribution and evolution of the Ningxiang-type sedimentary iron deposits[J]. Mineral Deposits, 19(4): 350-362. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-7106.2000.04.008

    CrossRef Google Scholar

    [64] 赵一鸣, 2013. 中国主要富铁矿床类型及地质特征[J]. 矿床地质, 32(4): 686-705 doi: 10.3969/j.issn.0258-7106.2013.04.004

    CrossRef Google Scholar

    Zhao Y M, 2013. Main genetic types and geological characteristics of iron-rich ore deposits in China[J]. Mineral Deposits, 32(4): 686-705. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-7106.2013.04.004

    CrossRef Google Scholar

    [65] 郑赫, 2016. 鄂西宁乡式铁矿地球化学特征及对成矿环境的指示[D]. 硕士学位论文. 北京: 中国地质大学, 1−67

    Google Scholar

    Zheng H, 2016. Geochemical characteristics of the Ningxiang−type iron deposits in the west of Hubei Province and their implications for metallogenic environment[D]. Master Degree Thesis. Beijing: China University of Geosciences, 1−67. (in Chinese with English abstract)

    Google Scholar

    [66] 周家云, 郑荣才, 张裕书, 等, 2009. 华南泥盆纪古地理环境对宁乡式铁矿床时空分布、矿石特征的制约[J]. 地质科技通报(原地质科技情报), 28(1): 93-98

    Google Scholar

    Zhou J Y, Zheng R C, Zhang Y S, et al. , 2009. Constraints of South China Devonian Ningxiang palaeogeography on the temporal and spatial distribution of iron ore deposits and their characteristics[J]. Bulletin of Geological Science and Technology, 28(1): 93-98. (in Chinese with English abstract)

    Google Scholar

    [67] 朱继存, 2001. 宁乡式铁矿床成因的新认识[J]. 合肥工业大学学报(自然科学版), 24(1): 143-146 doi: 10.3969/j.issn.1003-5060.2001.01.031

    CrossRef Google Scholar

    Zhu J C, 2001. New views on the genesis of Ningxiang-type iron deposit[J]. Journal of Hefei University of Technology (Natural Science), 24(1): 143-146. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-5060.2001.01.031

    CrossRef Google Scholar

    [68] 朱伟鹏, 宋公社, 陈强, 等, 2020. 西山煤田石炭—二叠纪岩相古地理演化特征分析[J]. 西北地质, 53(4): 20-33 doi: 10.19751/j.cnki.61-1149/p.2020.04.003

    CrossRef Google Scholar

    Zhu W P, Song G S, Chen Q, et al. , 2020. Analysis on paleographical evolution of Carboniferous-Permian lithofacies in Xishan coalfield, Shanxi Province[J]. Northwestern Geology, 53(4): 20-33. (in Chinese with English abstract) doi: 10.19751/j.cnki.61-1149/p.2020.04.003

    CrossRef Google Scholar

    [69] 祝新友, 王京彬, 王艳丽, 等, 2015. 宁乡式铁矿成因新解: 后生热液成因的地质与地球化学证据[J]. 矿产勘查, 6(1): 7-16 doi: 10.3969/j.issn.1674-7801.2015.01.001

    CrossRef Google Scholar

    Zhu X Y, Wang J B, Wang Y L, et al. , 2015. Study on genesis of Ningxiang type (Clinton type) iron deposit, Hunan[J]. Mineral Exploration, 6(1): 7-16. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-7801.2015.01.001

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(4) PDF downloads(1) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint