2024 Vol. 44, No. 3
Article Contents

ZHANG Tao, WANG Linlin, LIAO Huihong, ZOU Min, LIANG Ru, WANG Peng, SU Zhongtang. 2024. Methods and research progress of paleo-water depth reconstruction in sedimentary basins. Sedimentary Geology and Tethyan Geology, 44(3): 582-599. doi: 10.19826/j.cnki.1009-3850.2023.11003
Citation: ZHANG Tao, WANG Linlin, LIAO Huihong, ZOU Min, LIANG Ru, WANG Peng, SU Zhongtang. 2024. Methods and research progress of paleo-water depth reconstruction in sedimentary basins. Sedimentary Geology and Tethyan Geology, 44(3): 582-599. doi: 10.19826/j.cnki.1009-3850.2023.11003

Methods and research progress of paleo-water depth reconstruction in sedimentary basins

More Information
  • The analysis of paleo-water depth is of great significance in fields such as paleo-environment reconstruction, basin analysis, sequence stratigraphy studies, reconstruction of ancient landform, and the evaluation of source, reservoir, and cap rock conditions. Paleo-water depth analysis methods usually include paleontological, sedimentological, geophysical, geochemical, and digital simulation methods, each with their own strengths and limitations. Although some methods have advantages in a specific geological background, there are some deviations between different methods in reconstructing paleo-water depth in the same environment. These methods are mostly qualitative, easily restricted by natural conditions and require the samples of high reliability, which limits paleo-water depth research to a certain extent. Therefore, when analyzing paleo-water depth, it is suggested to comprehensively consider various factors such as geological background, environmental evolution, geological characteristics, and geological data, and to adopt multiple methods to study mutual constraints, in order to jointly explore the law of Paleo-water depth variation in the target layer.

  • 加载中
  • [1] Allen J, 1967. Depth Indicators of Clastic Sequences[J]. Marine Geology, 5(5): 429-446.

    Google Scholar

    [2] Cant D J, 1991. Geometric Modelling of Fades Migration: Theoretical Development of F Acies Successions and Local Unconformities[J]. Basin Research, 3(2): 51-62. doi: 10.1111/j.1365-2117.1991.tb00139.x

    CrossRef Google Scholar

    [3] Chappell J, Polach H, 1991. Post-glacial Sea-level Rise From a Coral Record at Huon Peninsula, Papua New Guinea[J]. Nature, 349(6305): 147-149. doi: 10.1038/349147a0

    CrossRef Google Scholar

    [4] 陈中红, 查明, 金强, 2004. 自然伽玛及自然伽玛能谱测井在沉积盆地古环境反演中的应用[J]. 地球物理学报, (6): 1145-1150

    Google Scholar

    Chen Z H, Cha M, Jin Q, 2004. Application of natural gamma ray logging and natural gamma spectrometry logging to recovering paleoenvironment of sedimentary basin[J]. Chinese Journal of Geophysics, (6): 1145-1150.

    Google Scholar

    [5] 陈中红, 查明, 2004. 铀曲线在沉积盆地古环境反演中的应用[J]. 石油大学学报(自然科学版), 28(6): 11-14

    Google Scholar

    Chen Z H, Zha M, 2004. Application of uranium curve to paleoenvironment inversion in sedimentary basin[J]. Journal of the University of Petroleum, China(Edition of Natural Science), 28(6): 11-14.

    Google Scholar

    [6] 程逸凡, 董艳蕾, 朱筱敏, 等, 2020. 准噶尔盆地春光探区白垩纪古地貌恢复及其控砂机制[J]. 古地理学报, 22(6): 1127-1142

    Google Scholar

    Cheng Y F, Dong Y L, Zhu X M, et al. , 2020. Cretaceous palaeogeomorphology restoration and its controlling mechanism on sand-bodies in Chunguang exploration area, Junggar Basin[J]. Journal of Palaeogeography(Chinese Edition), 22(6): 1127-1142.

    Google Scholar

    [7] 代大经, 唐正松, 陈鑫堂, 等, 1995. 铀的地球化学特征及其测井响应在油气勘探中的应用[J]. 天然气工业, 15 (5): 21 − 24, 99 − 100

    Google Scholar

    Dai D J, Tang Z S, Chen X T, et al., 1995. Geochemical characteristics of uranium and the application of its response on logging curve to oil and gas exploration[J]. Gas Industry, 15(5): 21-24, 99-100.

    Google Scholar

    [8] Derry L A, Brasier M D, Corfield R M, et al. , 1994. Sr and C isotopes in Lower Cambrian carbonates from the Siberian craton: A paleoenvironmental record during the 'Cambrian explosion'[J]. Earth & Planetary Science Letters, 128(3-4): 671-681.

    Google Scholar

    [9] 董刚, 何幼斌, 2010. 根据地层厚度恢复古水深的研究[J]. 长江大学学报(自然科学版)理工卷, 7(3): 484-486

    Google Scholar

    Dong G, He Y b, 2010. Study on paleo-water-depth restoration according based on stratum thickness[J]. Journal of Yangtze University(Natural Science Edition) Science & Engineering, 7(3): 484-486.

    Google Scholar

    [10] Durand B, Espitalié J, 1973. Evolution de la matière organique au cours de l'enfouissement des sediments[J]. Compte rendus de l'Académie des Sciences (Paris), 276: 2253 − 2256.

    Google Scholar

    [11] Emmel B, Geiger M, Jacobs J, 2006. Detrital Apatite Fission-track Ages in Middle Jurassic Strata at the Rifted Margin of W Madagascar—indicator for a Protracted Resedimentation History[J]. Sedimentary Geology, 186(1): 27-38.

    Google Scholar

    [12] Emmel B, Jager G D, Zieba K, et al. , 2015. A 3D, Map Based Approach to Reconstruct and Calibrate Palaeo-bathymetries – Testing the Cretaceous Water Depth of the Hammerfest Basin, Southwestern Barents Sea[J]. Continental Shelf Research, 97: 21-31. doi: 10.1016/j.csr.2015.02.003

    CrossRef Google Scholar

    [13] 范萌萌, 卜军, 赵筱艳, 等, 2019. 鄂尔多斯盆地东南部延长组微量元素地球化学特征及环境指示意义[J]. 西北大学学报(自然科学版), 49(4): 633-642

    Google Scholar

    Fan M M, Bu J, Zhao X Y, et al. , 2019. Geochemical characteristics and environmental implications of trace elements of Yanchang Formation in southeastern Ordos basin[J]. Journal of Northwest University (Natural Soience Edition), 49(4): 633-642.

    Google Scholar

    [14] 方鹏高, 2020. 汇聚背景下新生代陆缘盆地的沉降特征及主控因素——以东海冲绳海槽和地中海瓦伦西亚海槽为例[D]. 杭州: 浙江大学: 1 − 158

    Google Scholar

    Fang P G, 2020. Subsidence process and controlling factors of Cenozoic continental margin basins in convergent setting: Insights from the Okinawa Trough, East China Sea and the Valencia Trough, Mediterranean[D]. Hangzhou: Zhejiang University: 1 − 158.

    Google Scholar

    [15] 樊茹, 邓胜徽, 张学磊.2010.碳酸盐岩碳同位素地层学研究中数据的有效性.地层学杂志, 34(4):445~451.

    Google Scholar

    Fan R, Deng S H,Zhang X L.2010.The data validity evluation of carbonateδ13 C in C-isotope chemostratigraphy.Journal of Stratigraphy,34(4):445~451.

    Google Scholar

    [16] Farouk S, Aaskalany M, El-Sorogy A, et al., 2020. Maastrichtian‐early Paleocene foraminiferal palaeobathymetry and depositional sequences at Gebel El Sharawna, south Luxor, Egypt[J]. Lethaia, 53(3), 316 − 331.

    Google Scholar

    [17] Flügel E, 2010. Microfacies of carbonate rocks: analysis, interpretation and application[M]. Berlin: springer: 725 − 802.

    Google Scholar

    [18] Frey R W. The Study of Trace Fossils: A Synthesis of Principles, Problems, and Procedures in Ichnology[M]. Springer Berlin Heidelberg, 1975.

    Google Scholar

    [19] Frey R W, Seilacher A, 2007. Uniformity in Marine Invertebrate Ichnology[J]. Lethaia, 13(3): 183-207.

    Google Scholar

    [20] Gemmer L, Huuse M, Clausen O R, et al. , 2002. Mid‐palaeocene Palaeogeography of the Eastern North Sea Basin: Integrating Geological Evidence and 3 d Geodynamic Modelling[J]. Basin Research, 14(3): 329-346. doi: 10.1046/j.1365-2117.2002.00182.x

    CrossRef Google Scholar

    [21] Ginsburg R N, Rezak R, Wray J L, 1972. Geology of calcareous algae (Notes for a short course)[R]. Miami: University of Miami.

    Google Scholar

    [22] Glørstad-Clark E, Birkeland E P, Nystuen J P, et al., 2011. Triassic platform-margin deltas in the western Barents Sea[J]. Marine and Petroleum Geology, 28(7), 1294 − 1314.

    Google Scholar

    [23] 龚一鸣, 胡斌, 卢宗盛, 等, 2009. 中国遗迹化石研究80年[J]. 古生物学报, 48(3): 322-337

    Google Scholar

    Gong Y M, Hu B, Lu Z S, et al. , 2009. Study of trace fossils in the past eighty years in China[J]. Acta Palaeontologica Sinica, 48(3): 322-337.

    Google Scholar

    [24] 龚一鸣, 1994. 新疆北部泥盆系遗迹化石共生组合关系及其古环境和古生态意义[J]. 现代地质, 8(2): 154-162

    Google Scholar

    Gong Y M, 1994. Association Relationships among the Devonian Trace Fossils in Northern Xinjiang and Their Palaeoenvironmental and Palaeoecological Significances[J]. Geoscience, 8(2): 154-162.

    Google Scholar

    [25] Grimsdale T F, Morkhoven F, 1955. The ratio between pelagic and benthonic foraminifera as a means of estimating depth of deposition of sedimentary rocks[C]. IV World Petrol Cong Proc, Soc I/D, Rep, 4: 473 − 491.

    Google Scholar

    [26] 管守锐, 1988. 化石岩石学[M]. 东营: 石油大学出版社: 92 − 96

    Google Scholar

    Guan S R, 1988. Petrography of fossils [M]. Dongying: China University of Petroleum Press: 92 − 96.

    Google Scholar

    [27] 郭秋麟, 倪丙荣, 1990. 利用化石群分异度探讨古水深[J]. 石油大学学报(自然科学版), 14(2): 1-7

    Google Scholar

    Guo Q L, Ni B R, 1990. Determination of palaeodepth with diversity of fossil community[J]. Journal of the University of Petroleum, 14(2): 1-7.

    Google Scholar

    [28] 郭晓强, 李好斌, 魏荣珠, 等, 2020. 山西沁水盆地西缘寒武系碳酸盐岩的元素地球化学特征及其古环境意义[J]. 古地理学报, 22(2): 349-366

    Google Scholar

    Guo X Q, Li H B, Wei R Z, et al. , 2020. Characteristics of elemental geochemistry of the Cambrian carbonate rocks and their palaeoenvironmental implication in western margin of Qinshui Basin, Shanxi province[J]. Journal of Palaeogeography, 22(2): 349-366.

    Google Scholar

    [29] Helland-Hansen W, Martinsen O J, 1996. Shoreline trajectories and sequences; description of variable depositional-dip scenarios[J]. Journal of Sedimentary Research, 66(4), 670 − 688.

    Google Scholar

    [30] 贺轲, 2012. 利用Th/U比值曲线研究沉积环境古水深变化[J]. 中国石油和化工标准与质量, 33(z1): 230-231

    Google Scholar

    He K, 2012. Th/U ratios curve was used to study sedimentary environment of water depth change[J]. China Petroleum and Chemical Standard and Quality, 33(z1): 230-231.

    Google Scholar

    [31] 胡斌, 姜在兴, 齐永安, 等, 2006. 山东济阳坳陷古近系沙河街组深水湖沉积中的遗迹化石[J]. 古生物学报, 45(1): 83-94

    Google Scholar

    Hu B, Jiang Z X, Qi Y A, et al. , 2006. Trace fossils of deeper lacustrine deposits in the Paleogene Shahejie Formation of Jiyang Depression, Shandong Province, eastern China[J]. Acta Palaeontologica Sinica, 45(1): 83-94.

    Google Scholar

    [32] 胡明毅, 1994. 塔北柯坪奥陶系碳酸盐岩地球化学特征及环境意义[J]. 石油与天然气地质, 15(2): 158-163

    Google Scholar

    Hu M Y, 1994. Geochemical characters and environmental significance of Ordovician carbonate rocks in Kepingarea, Tarim basin[J]. Oil & Gas Geology, 15(2): 158-163.

    Google Scholar

    [33] 黄思静, 1997. 上扬子地台区晚古生代海相碳酸盐岩的碳、锶同位素研究[J]. 地质学报, 71(1): 45-53

    Google Scholar

    Huang S J, 1997. A study on carbon and strontium isotopes of Late Paleozoic carbonate rocks in the Upper Yangtze platform[J]. Acta Geologica Sinica, 71(1): 45-53.

    Google Scholar

    [34] Jiang Z X, Liang S Y, Zhang Y F, et al. , 2014. Sedimentary hydrodynamic study of sand bodies in the upper subsection of the 4 th Member of the Paleogene Shahejie Formation in the eastern Dongying Depression, China[J]. Petroleum Science, 11(2): 189-199. doi: 10.1007/s12182-014-0332-7

    CrossRef Google Scholar

    [35] 康波, 解习农, 杜学斌, 等, 2012. 基于滨线轨迹的古水深定量计算新方法——以古近系沙三中段东营三角洲为例[J]. 沉积学报, 30(3): 443-450

    Google Scholar

    Kang B, Xie X N, Du X B, et al. , 2012. A new paleobathymetric approach based on shoreline trajectory: An example from Dongying delta in the third member of Paleogene Shahejie Formation[J]. Acta Sedimentologica Sinica, 30(3): 443-450.

    Google Scholar

    [36] Kaufman A J, Konll A H, Narbonne G M, 1997. Isotopes, ice ages and terminal Proterozoic earth history [J]. Preceedings ofthe National Academy of Sciences, 94(13): 6600-6605. doi: 10.1073/pnas.94.13.6600

    CrossRef Google Scholar

    [37] Kjennerud T, Sylta O, 2001. Application of Quantitative Palaeobathymetry in Basin Modelling, with Reference to the Northern North Sea[J]. Petroleum Geoscience, 7(4): 331-341. doi: 10.1144/petgeo.7.4.331

    CrossRef Google Scholar

    [38] Krastel S, Schmincke H U, Jacobs C L, et al., 2001, Submarine Landslides Around the Canary Islands[J]. Journal of Geophysical Research Solid Earth, 106(B3): 3977 − 3997.

    Google Scholar

    [39] 李高杰, 2020. 西藏安多地区上侏罗统碳同位素波动与古环境研究[D]. 成都: 成都理工大学, 1 − 171.

    Google Scholar

    Li G J, 2020. The carbon isotope fluctuations and its paleoenvironmental significance of the Upper Jurassic bulk carbonate from Amdo area, Tibet[D]. Chengdu: Chengdu University of Technology: 1 − 171.

    Google Scholar

    [40] 李慧琼, 蒲仁海, 王大兴, 等, 2014. 鄂尔多斯盆地延长组地震前积反射的地质意义[J]. 石油地球物理勘探, 49(5): 985-996

    Google Scholar

    Li H Q, Pu R H, Wang D X, et al. , 2014. Progradational reflection from lacustrine Yanchang Formation in Ordos Basin, China[J]. Oil Geophysical Prospecting, 49(5): 985-996.

    Google Scholar

    [41] 李任伟, 陈锦石, 张淑坤, 1999. 中元古代雾迷山组碳酸盐岩碳和氧同位素组成及海平面变化[J]. 科学通报, 44: 1697-1702 doi: 10.1007/BF03183494

    CrossRef Google Scholar

    Li R W, Chen J S, Zhang S K, 1999. Carbon and oxygen isotopic compositions of carbonate rocks and the changes of the sea level in the Mesoproterozoic Wumishan Formation[J]. Science Bulletin, 44: 1697-1702. doi: 10.1007/BF03183494

    CrossRef Google Scholar

    [42] 李守军, 郑德顺, 姜在兴, 等, 2005. 用介形类优势分异度恢复古湖盆的水深——以山东东营凹陷古近系沙河街组沙三段湖盆为例[J]. 古地理学报, (3): 399-404

    Google Scholar

    Li S J, Zheng D S, Jiang Z X, et al. , 2005. Water depth of palaeo-lacustrine basin recovered by dominance diversity of Ostracoda: An example from sedimentary period of the Member3 of Shahejie Formation of Paleogene in Dongying Sag, Shandong Province[J]. Journal of Palaeogeography, (3): 399-404.

    Google Scholar

    [43] 李绪龙, 张霞, 林春明, 等, 2022. 常用化学风化指标综述: 应用与展望[J]. 高校地质学报, 28(01): 51-63

    Google Scholar

    Li, X. L, Zhang, X, Lin, C. M, et al. , 2022. Overview of the Application and Prospect of Common Chemical Weathering Indices[J]. Geological Journal of China Universities, 28(1): 51-63.

    Google Scholar

    [44] 李学杰, 陈芳, 陈超云, 等, 2004. 南海西部浮游有孔虫含量与水深关系定量研究[J]. 古地理学报, 6(4): 442-447

    Google Scholar

    Li X J, Chen F, Chen C Y, et al. , 2004. Quantitative research on relationship between planktonic foraminifera content and water depth in western South China Sea[J]. Journal of Palaeogeography(Chinese Edition), 6(4): 442-447.

    Google Scholar

    [45] 梁宁, 2017. 龙门山地区PTB界线处火山事件研究[D]. 成都: 成都理工大学: 1 − 73.

    Google Scholar

    Liang N, 2017. The volcanic event study in Permian -Triassic boundary of Longmen mountain[D]. Chengdu: Chengdu University of Technology: 1 − 173.

    Google Scholar

    [46] 刘宝珺, 曾允孚, 1985. 岩相古地理基础和工作方法[M]. 北京: 地质出版社: 222 − 224

    Google Scholar

    Liu B J, Zeng Y F, 1985. Basic and working methods of lithofacies paleogeography[M]. Beijing: Geological Publishing House: 222 − 224.

    Google Scholar

    [47] 刘梦瑶, 齐永安, 史云鹤, 等, 2020. 华北寒武纪—奥陶纪豹皮状碳酸盐岩系生物扰动成因[J]. 沉积学报, 38(1): 91-103

    Google Scholar

    Liu M Y, Qi Y G, Shi Y H, et al. , 2020. Formation Mechanism of Cambrian—Ordovician Bioturbated Dolomites in North China[J]. Acta Sedimentologica Sinica, 38(1): 91-103.

    Google Scholar

    [48] 刘鑫, 尚婷, 田景春, 等, 2021. 鄂尔多斯盆地镇北地区延长组长4+5段沉积期古环境条件及意义[J]. 地质学报, 95(11): 3501-3518

    Google Scholar

    Liu X, Shang T, Tian J C, et al. , 2021. Paleo-sedimentary environmental conditions and its significance of Chang 4+5 Member of Triassic Yanchang Formation in the Zhenbei area, Ordos basin, NW China[J]. Acta Geologica Sinica, 95(11): 3501-3518.

    Google Scholar

    [49] 刘招君, 孟庆涛, 柳蓉, 等, 2010. 古湖泊学研究: 以桦甸断陷盆地为例[J]. 沉积学报, 28(5): 917-925

    Google Scholar

    Liu Z J, Meng Q T, Liu R, et al. , 2010. Paleolimnology Study: Taking Huadian Fault Basin as an example[J]. Acta Sedimentologica Sinica, 28(5): 917-925.

    Google Scholar

    [50] 刘志礼, 1990. 化石藻类导论[M]. 北京: 高等教育出版社, 1 − 18

    Google Scholar

    Liu Z L, 1990. Introduction to Calcareous Algae[M]. Beijing: Higher Education Press, 1 − 18.

    Google Scholar

    [51] 卢双舫, 薛海涛, 钟宁宁, 2003. 地史过程中烃源岩有机质丰度和生烃潜力变化的模拟计算[J]. 地质论评, 49(3): 292-297

    Google Scholar

    Lu S F, Xue H T, Zhong N N, 2003. Simulating calculation of the variations of organic matter abundance and hydrocarbon-generating potential during geological processes[J]. Geological Review, 49(3): 292-297.

    Google Scholar

    [52] 陆雨诗, 胡勇, 侯云东, 等, 2021. 鄂尔多斯盆地西缘羊虎沟组微量元素地球化学特征及沉积环境指示意义[J]. 科学技术与工程, 21(28): 11999-12009

    Google Scholar

    Lu Y S, Hu Y, Hou Y D, et al. , 2021. Geochemical Characteristics of Trace Elements in Yanghugou Formation in the Western Margin of Ordos Basin and Their Implications for Sedimentary Environment[J]. Science Technology and Engineering, 21(28): 11999-12009.

    Google Scholar

    [53] 牛晓路, 李国彪, 韩子晨, 等, 2015. 西藏亚东堆纳地区始新世钙藻化石[J]. 微体古生物学报, 32(4): 361-371

    Google Scholar

    Niu X L, Li G B, Han Z C, et al. , 2015. Eocene calcareous algae from Duina, Yadong, Southern Tibet, China[J]. Acta Micropalaeontologica Sinica, 32(4): 361-371.

    Google Scholar

    [54] 牛晓路, 李国彪, 王天洋, 2016. 藏南亚东堆纳地区古近纪钙藻化石与沉积环境[J]. 现代地质, 30(4): 863-870

    Google Scholar

    Niu X L, Li G B, Wang T Y, 2016. Paleogene calcareous algae and sedimentary environment in Tuna area of Yadong in southern Tibet[J]. Geoscience, 30(4): 863-870.

    Google Scholar

    [55] 庞军刚, 李文厚, 肖丽, 2009. 陕北地区延长组坳陷湖盆浅湖与深湖亚相的识别特征[J]. 兰州大学学报: 自然科学版, 45(6): 36 − 40.

    Google Scholar

    Pang J G, Li W H, Xiao L, 2009. Identifying characteristics of shallow lake and deep lake of Yanchang formation depressed type lacustrine basin in Shanbei area[J]. Journal of Lanzhou University(Natural Sciences), 45(6): 37 − 40.

    Google Scholar

    [56] 庞军刚, 杨友运, 郝磊, 2012. 湖盆古水深恢复研究现状综述[J]. 长江大学学报: 自然科学版, 9(9): 4.

    Google Scholar

    Pang J G, Yang Y Y, Hao L, 2012. Summary of research status of ancient water depth restoration in lake Basin[J]. Journal of Yangtze University (Natural Science Edition) Science & Engineering, 9(9): 42 − 45.

    Google Scholar

    [57] Pérez‐Asensio J N, 2021. Quantitative palaeobathymetric reconstructions based on foraminiferal proxies: a case study from the Neogene of south‐west Spain[J]. Palaeontology, 64(4): 475-488. doi: 10.1111/pala.12538

    CrossRef Google Scholar

    [58] Phleger F B, Parker F L, 1951. Ecology of Foraminifera, Northwest Gulf of Mexico[J]. Quarterly Review of Biology: 1 − 84.

    Google Scholar

    [59] Qing H, Veizer J, 1994. Oxygen and carbon isotopic composition of Ordovician brachiopods: Implications for coeval seawater[J]. Geochimica et Cosmochimica Acta, 58(20): 4429-4442. doi: 10.1016/0016-7037(94)90345-X

    CrossRef Google Scholar

    [60] 邱家骧, 林景仟, 1991. 岩石化学[M]. 北京地质出版社: 242 − 256

    Google Scholar

    Qiu J X, Lin J Q, 1991. Petrochemistry. Beijing[M]. Geological Publishing House: 242 − 256.

    Google Scholar

    [61] Riding R, 1991. Calcareous algae and stromatolites[M]. Springer, Berlin Heidelberg.

    Google Scholar

    [62] Roberts J M, Brown C J, Long D, et al. , 2005. Acoustic Mapping Using a Multibeam Echosounder Reveals Cold-water Coral Reefs and Surrounding Habitats[J]. Coral Reefs, 24(4): 654-669. doi: 10.1007/s00338-005-0049-6

    CrossRef Google Scholar

    [63] Sandwell D T, Smith W, Gille S, et al. , 2006. Bathymetry From Space: Rationale and Requirements for a New, High-resolution Altimetric Mission[J]. Comptes Rendus - Géoscience, 338(14): 1049-1062.

    Google Scholar

    [64] Seilacher A, 1964. Sedimentological clasification and nomenclature of trace fossils[J]. Sedimentology, 3: 253-256. doi: 10.1111/j.1365-3091.1964.tb00464.x

    CrossRef Google Scholar

    [65] Seilacher A, 1967. Bathymetry of Trace Fossils[J]. Marine Geology, 5(5): 413-428.

    Google Scholar

    [66] 邵龙义, Jones T P, 1999. 桂中晚二叠世碳酸盐岩碳同位素的地层学意义[J]. 沉积学报, 17(1): 84-88

    Google Scholar

    Shao L Y, Jones T P, 1999. Carbon isotopes and the strati-graphical implication of the Late Permian Carbonates in Central Guangxi[J]. Acta Sedimentologica Sinica, 17(1): 84-88.

    Google Scholar

    [67] 宋慧波, 金毅, 胡磊, 等, 2012. 豫西地区下二叠统太原组遗迹组构及其沉积环境[J]. 地质学报, 86(6): 972-984

    Google Scholar

    Song H B, Jin Y, Hu L, et al. , 2012. Ichnofabrics and their sedimentary environment of the Lower Permian Taiyuan Formation, western Henan[J]. Acta Geologica Sinica, 86(6): 972-984.

    Google Scholar

    [68] Strauss H, Moore T B, Schopf W, et al., 1992. Abundances and isotopic compositions of carbon and sulfur species in whole rock and kerogen samples[J]. The Proterozoic biosphere: 709 − 798.

    Google Scholar

    [69] 苏新, 丁旋, 姜在兴, 等, 2012. 用微体古生物定量水深法对东营凹陷沙四上亚段沉积早期湖泊水深再造[J]. 地学前缘, 19(1): 188-199

    Google Scholar

    Su X, Ding X, Jiang Z X, et al. , 2012. Using of multi-microfossil proxies for reconstructing quantitative paleo-water depth during the deposit period of LST of Ess4 in Dongying Depression[J]. Earth Science Frontiers, 19(1): 188-199.

    Google Scholar

    [70] Thuy B, Meyer C A, 2013. The pitfalls of extrapolating modern depth ranges to fossil assemblages: new insights from Middle Jurassic brittle stars (Echinodermata: Ophiuroidea) from Switzerland[J]. Swiss Journal of Palaeontology, 132(1): 5-21 doi: 10.1007/s13358-012-0048-5

    CrossRef Google Scholar

    [71] 田景春, 曾允孚, 1995. 贵州二叠纪海相碳酸盐岩碳、氧同位素地球化学演化规律[J]. 成都理工学院学报, 22 (1): 78-82

    Google Scholar

    Tian J C, Zeng Y F, 1995. The evolution pattern of the carbon and oxygen isotopes in the Permian marine carbonate rocks from Guizhou[J]. Journal of Chengdu University of Technology, 22 (1): 78-82.

    Google Scholar

    [72] 田景春, 陈高武, 张翔, 等, 2006. 沉积地球化学在层序地层分析中的应用[J]. 成都理工大学学报(自然科学版), 33(1): 30-35

    Google Scholar

    Tian J C, Chen G W, Zhang X, et al. , 2006. Application of sedimentary geochemistry in the analysis of sequence stratigraphy[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 33(1): 30-35.

    Google Scholar

    [73] 万锦峰, 鲜本忠, 佘源琦, 等, 2011. 基于伽马能谱测井信息的古水深恢复方法——以塔河油田4区巴楚组为例[J]. 石油天然气学报, 33(6): 9, 98 − 103.

    Google Scholar

    Wan J F, Xian B Z, She Y Q, et al., 2011. Palaeobathymetric reconstruction based on natural gamma ray spectrometry logging data: by taking Bachu Formation in region 4 of Tahe oilfield for example[J]. Journal of Oil and Gas Technology, 33(6): 98 − 103.

    Google Scholar

    [74] 汪凯明, 罗顺社, 2009. 碳酸盐岩地球化学特征与沉积环境判别意义——以冀北坳陷长城系高于庄组为例[J]. 石油与天然气地质, 30(3): 343-349

    Google Scholar

    Wang K M, Luo S S, 2009. Geochemical characters of carbonates and indicative significance of sedimentary environment—an example from the Gaoyuzhuang Formation of the Changcheng System in the northern Hebei Depression[J]. Oil & Gas Geology, 30(3): 343-349.

    Google Scholar

    [75] 王昌勇, 常玖, 李楠, 等, 2022. 四川盆地东部地区早侏罗世湖泊古水深恢复[J]. 沉积学报: 1 − 16

    Google Scholar

    Wang C Y, Chang J, Li N, et al., 2022. Paleo-water-depth Reconstruction of Early Jurassic Lakes in the Eastern Sichuan Basin[J]. Acta Sedimentologica Sinica: 1 − 16.

    Google Scholar

    [76] 王成善, 李祥辉, 2003. 沉积盆地分析原理与方法[M]. 北京: 高等教育出版社: 136 − 145

    Google Scholar

    Wang C S, Li X H, 2003. Sedimentary basin: From principles to analyses[M]. Beijing: Higher Education Press: 136 − 145.

    Google Scholar

    [77] 王峰, 刘玄春, 邓秀芹, 等, 2017. 鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义[J]. 沉积学报, 35(6): 1265-1273

    Google Scholar

    Wang F, Liu X C, Deng X Q, et al. , 2017. Geochemical Characteristics and Environmental Implications of Trace Elements of Zhifang Formation in Ordos Basin[J]. Acta Sedimentologica Sinica, 35(6): 1265-1273.

    Google Scholar

    [78] 王建, 杨怀仁, 1995. 转换函数与南黄海13万年来海水深度的变化[J]. 地理科学, 15(4): 321-326

    Google Scholar

    Wang J, Yang HR, 1995. Transfer function and water depth changes in the southern Yellow Sea in the last 130000 years[J]. Scientia Geographica Sinica, 15(4): 321-326.

    Google Scholar

    [79] 王璞珺, 杜小弟, 1993. 沉积盆地分析的定量数学模拟: 原理与方法[J]. 西安石油大学学报(自然科学版), 8(1): 14-18

    Google Scholar

    Wang P J, Du X D, 1993. Principles and Methods of Quantitative Mathematical Simulation of Sedimentary Basin Analysis[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 8(1): 14-18.

    Google Scholar

    [80] 王学军, 王志欣, 刘显阳, 等, 2008. 利用铀的测井响应恢复鄂尔多斯盆地古水深[J]. 天然气工业, 28(7): 46 − 48, 135.

    Google Scholar

    Wang X J, Wang Z X, Liu X Y, et al., 2008. Recovery of ancient water depth in Ordos Basin by using uranium logging data[J]. Natural Gas Industry, 28(7): 46 − 48.

    Google Scholar

    [81] 魏亚琼, 王昌勇, 孟祥豪, 等, 2017. 青海湖布哈河口区表层沉积物有机质分析及其比较沉积学意义[J]. 湖泊科学, 29(5): 1254-1264 doi: 10.18307/2017.0524

    CrossRef Google Scholar

    Wei Y Q, Wang C Y, Meng X H, et al. , 2017. Organic matter analysis of surface sediment in Buha Estuary region and its comparative sedimentology significance[J]. Journal of Lake Sciences, 29(5): 1254-1264. doi: 10.18307/2017.0524

    CrossRef Google Scholar

    [82] Wray J L, 1978. Calcareous Algae[M]. Amsterdam: Elsevier: 34 − 71.

    Google Scholar

    [83] 吴因业, 吴洛菲, 岳婷, 2012. 陆相湖盆的滨线轨迹分析及其石油地质应用[C]// 第十二届全国古地理学及沉积学学术会议论文摘要集: 235

    Google Scholar

    Wu Y Y, Wu L F, Yue T, 2012. Shoreline trajectory analysis of continental lacustrine basins and its application to petroleum geology[C]//Summary of Papers of the Twelfth National Academic Conference on Paleogeography and Sedimentology: 235.

    Google Scholar

    [84] 吴智平, 周瑶琪, 2000. 一种计算沉积速率的新方法: 宇宙尘埃特征元素法[J]. 沉积学报, 18(3): 395-399

    Google Scholar

    Wu Z P, Zhou Y Q, 2000. Using the characteristic elements from meteoritic must in strata to calculate sedimentation rate[J]. Acta Sedimentologica Sinica, 18 (3): 395-399.

    Google Scholar

    [85] 武爱俊, 徐建永, 滕彬彬, 等, 2017. “动态物源”精细刻画方法与应用——以琼东南盆地崖南凹陷为例[J]. 岩性油气藏, 29(4): 55-63

    Google Scholar

    Wu A J, Xu J Y, Teng B B, et al. , 2017. Fine description method of dynamic provenance and its application: A case from Yanan Sag, Qiongdongnan Basin[J]. Lithologic Reservoirs, 29(4): 55-63.

    Google Scholar

    [86] 肖坤泽, 童亨茂, 杨东辉, 等, 2020. 莺歌海盆地新近纪以来古构造地貌恢复[J]. 石油实验地质, 42(2): 215-222

    Google Scholar

    Xiao K Z, Tong H M, Yang D H, et al. , 2020. Restoration of Neogene paleo-geomorphology of Yinggehai Basin[J]. Petroleum Geology & Experiment, 42(2): 215-222.

    Google Scholar

    [87] 许中杰, 程日辉, 张莉, 等, 2012. 华南陆缘晚三叠—早、中侏罗世海平面相对升降与古气候演化的地球化学记录[J]. 地球科学(中国地质大学学报), 37(1): 113-124

    Google Scholar

    Xu Z J, Cheng R H, Zhang L, et al. , 2012. The Geochemistry Records of Sea-Level Relative Movement and Paleoclimatic Evolution of the South China Continental Margin in Late Triassic-Early-Middle Jurassic[J]. Earth Science, 37(1): 113-124.

    Google Scholar

    [88] 许中杰, 孔锦涛, 程日辉, 等, 2020. 下扬子南京地区早寒武世幕府山组海平面相对升降的地球化学和碳、氧同位素记录[J]. 吉林大学学报(地球科学版), 50(1): 158-169

    Google Scholar

    Xu Z J, Kong J T, Cheng R H, et al. , 2020. Geochemical and Carbon and Oxygen Isotope Records of Relative Sea-Level Change of Mufushan Formation in Early Cambrian in Nanjing, Lower Yangtze Region[J]. Journal of Jilin University (Earth Science Edition), 50(1): 158-169.

    Google Scholar

    [89] 许中杰, 蓝艺植, 程日辉, 等, 2017. 句容地区下奥陶统仑山组海平面变化的碳酸盐岩地球化学记录[J]. 吉林大学学报(地球科学版), 47(5): 1458-1470

    Google Scholar

    Xu Z J, Lan Y Z, Cheng R H, et al. , 2017. Carbonate geochemical record of sea-level change of Lunshan Formation in Lower Ordovician in Jurong area[J]. Journal of Jilin University (Earth Science Edition), 47(5): 1458-1470.

    Google Scholar

    [90] 闫佩, 李儒峰, 贾海波, 2013. 湖泊古水深恢复方法分析[C]//中国石油学会.第六届油气成藏机理与油气资源评价国际学术研讨会论文集.

    Google Scholar

    Yan P, Li R F, Jia H B, 2013. Analysis on restoration methods of ancient lake bathymetric[C]//China Petroleum Society. 6th International Symposium on Oil and Gas Formation Mechanisms and Oil and Gas Resource Evaluation.

    Google Scholar

    [91] 杨克文, 庞军刚, 李文厚, 2009. 坳陷湖盆湖岸线的确定方法——以志丹地区延长组为例[J]. 兰州大学学报(自然科学版), 45(3): 13-17

    Google Scholar

    Yang K W, Pang J G, Li W H, 2009. Determination method of lake shoreline in depressed-type lacustrine basin: Taking the Yanchang Formation of Zhidan area as an example[J]. Journal of Lanzhou University (Natural Sciences), 45(3): 13-17.

    Google Scholar

    [92] 杨桥, 漆家福, 程秀申, 等, 2006. 河南东濮凹陷古近系各组段的原始地层厚度分布及其构造古地理意义[J]. 古地理学报, (3): 407-413

    Google Scholar

    Yang Q, Qi J F, Cheng X S, et al. , 2006. Distribution of original stratigraphic thickness of each member in the Paleogene and its tectonopalaeogeographic implication in Dongpu Sag, Henan Province[J]. Journal of Palaeogeography(Chinese Edition), 2006(3): 407-413.

    Google Scholar

    [93] 杨式溥, 1985. 我国遗迹化石研究的新进展[J]. 地质论评, 31(3): 197-203

    Google Scholar

    Yang S P, 1985. Advances in palaeoichnological research in China[J]. Geological Review, 31(3): 197-203.

    Google Scholar

    [94] 杨式溥, 1999. 遗迹化石的古环境和古地理意义[J]. 古地理学报, 1(1): 7-19

    Google Scholar

    Yang S P, 1999. Palaeoenvironmental and palaeogeographic significance of trace fossils[J]. Journal of Palaeogeography, 1(1): 7-19.

    Google Scholar

    [95] 杨万芹, 朱德顺, 银燕, 等, 2015. 古水深的地球化学恢复方法及在层序地层划分中的应用[J]. 地质论评, 61(S1): 756-757

    Google Scholar

    Yang W Q, Zhu D S, Yin Y, et al. , 2015. Geochemical restoration method of ancient water depth and its application in sequence stratigraphic division[J]. Geological Review, 61(S1): 756-757.

    Google Scholar

    [96] 杨振, 张光学, 张莉, 等, 2016. 西沙海域中中新世早期古地貌及其控制因素[J]. 海洋地质与第四纪地质, 36(3): 47-57

    Google Scholar

    Yang Z, Zhang G X, Zhang L, et al. , 2016. Paleogeomorphology of early middle Miocene in the Xisha sea area and Its control factors[J]. Marine geology and Quaternary geology, 36(3): 47-57.

    Google Scholar

    [97] 曾洪流, 赵贤正, 朱筱敏, 等, 2015. 隐性前积浅水曲流河三角洲地震沉积学特征——以渤海湾盆地冀中坳陷饶阳凹陷肃宁地区为例[J]. 石油勘探与开发, 42(5): 566-576

    Google Scholar

    Zeng H L, Zhao X Z, Zhu X M, et al. , 2015. Seismic sedimentology characteristics of sub-clinoformal shallow-water meandering river delta: A case from the Suning area of Raoyang Sag in Jizhong Depression, Bohai Bay Basin, NE China[J]. Petroleum Exploration and Development, 42(5): 566-576.

    Google Scholar

    [98] 翟明国, 杨树锋, 陈宁华, 等, 2018. 大数据时代: 地质学的挑战与机遇[J]. 中国科学院院刊, 33(8): 825-831

    Google Scholar

    Zhai M G, Yang S F, Chen N H, et al. , 2018. Big data epoch: Challenges and opportunities for geology[J]. Bulletin of Chinese Academy of Sciences, 33(8): 825-831.

    Google Scholar

    [99] 张立鹏, 边瑞雪, 杨双彦, 等, 2001. 用测井资料识别烃源岩[J]. 测井技术, 25(2): 146-152

    Google Scholar

    Zhang L P, Bian R X, Yang S Y, et al. , 2001. Identifying hydrocarbon source rock with log data[J]. Well Logging Technology, 25(2): 146-152.

    Google Scholar

    [100] Zhang L N, Fan J X, Chen Q, et al. , 2014. Reconstruction of the mid-Hirnantian palaeotopography in the Upper Yangtze region, South China[J]. Estonian Journal of Earth Sciences, 63(4): 329-334. doi: 10.3176/earth.2014.39

    CrossRef Google Scholar

    [101] 张琳娜, 樊隽轩, 陈清, 2016. 华南上奥陶统观音桥层的空间分布和古地理重建[J]. 科学通报, 61(18): 2053-2063 doi: 10.1360/N972015-00981

    CrossRef Google Scholar

    Zhang L N, Fan J X, Chen Q, 2016. Geographic distribution and palaeogeographic reconstruction of the Upper Ordovician Kuanyinchiao Bed in South China[J]. Chinese Science Bulletin, 61(18): 2053-2063. doi: 10.1360/N972015-00981

    CrossRef Google Scholar

    [102] 张世奇, 任延广, 2003. 松辽盆地中生代沉积基准面变化研究[J]. 长安大学学报(地球科学版), 23(2): 1-5

    Google Scholar

    Zhang S Q, Ren Y G, 2003. The study of base level changes of the Songliao Basin in Mesozoic[J]. Journal of Chang'an University(Earth Science Edition), 25(2): 1-5.

    Google Scholar

    [103] 张向林, 陶果, 刘新茹, 2006. 油气地球物理勘探技术进展[J]. 地球物理学进展, 21(1): 143-151

    Google Scholar

    Zhang X L, Tao G, Liu X R, 2006. Progress in oil geophysical exploration[J]. Progress in Geophysics (in Chinese), 21(1): 143-151.

    Google Scholar

    [104] 张霞, 林春明, 陈召佑.2011. 鄂尔多斯盆地镇泾区块上三叠统延长组砂岩中绿泥石矿物特征[J].地质学报, 85(10):1659-1671.

    Google Scholar

    Zhang X, Lin C M, Chen Z Y.2011. Characteristics of chlorite minerals from Upper Triassic Yanchang Formation in the Zhenjing area, Ordos Basin[J]. Acta Geologica Sinica, 85(10):1659-1671. (in Chinese with English abstract).

    Google Scholar

    [105] 赵澂林, 姜在兴, 刘孟慧, 1989. 东濮凹陷西部下第三系的遗迹相[J]. 石油大学学报(自然科学版), (1): 1-8

    Google Scholar

    Zhao C L, Jiang Z X, Liu M H, 1989. Theichnofacies of lower Tertiary in the west part of Dongpu Depression[J]. Journal of East China Petroleum Institute(Natural Science Edition), (1): 1-8.

    Google Scholar

    [106] 郑德顺, 李守军, 2002. 山东东营凹陷古近纪介形类优势分异度研究[J]. 古地理学报, 4(2): 64-70

    Google Scholar

    Zheng D S, Li S J, 2002. Study on the dominance diversity of Ostracoda of the Paleogene in Dongying Sag of Shandong[J]. Journal of Palaeogeography, 4(2): 64-70.

    Google Scholar

    [107] 郑荣才, 柳梅青, 1999. 鄂尔多斯盆地长6油层组古盐度研究[J]. 石油与天然气地质, 20(001): 22-27

    Google Scholar

    Zheng R C, Liu M Q, 1999. Studay on palaeosalinity of Chang 6 oil reservoir set in Ordos basin[J]. Oil & Gas Geology, 20(001): 22-27.

    Google Scholar

    [108] 郑荣才, 文华国, 徐文礼, 2021. 沉积岩石学[M]. 北京: 地质出版社: 87 − 89

    Google Scholar

    Zheng R C, Wen H G, Xu W L, 2021. Sedimentary petrology[M]. Beijing: Geological Publishing House: 87 − 89.

    Google Scholar

    [109] 钟建华, 李勇, 邵珠福, 等, 2015. 东营凹陷古近纪沙三中期超深水湖泊的研究[J]. 高校地质学报, 21(2): 320-327

    Google Scholar

    Zhong J H, Li Y, Shao Z F, et al. , 2015. The Ultr-water lake of Middle Sha-3 Formation during Paleogene in Dongying Sag, NE China[J]. Geological Journal of China Universities, 21(2): 320-327.

    Google Scholar

    [110] 钟建华, 倪良田, 邵珠福, 等, 2017. 渤海湾盆地古近纪超深水与极超深水沉积及油气地质意义[J]. 高校地质学报, 23(3): 521-532

    Google Scholar

    Zhong J H, Ni L T, Shao Z F, et al. , 2017. Identification of the ultradeep water deposition of the Bohai Bay Basin during the Paleogene and its significance for oil and gas geology[J]. Geological Journal of China Universities, 23(3): 521-532.

    Google Scholar

    [111] 周洪瑞, 王自强, 崔新省, 等, 1999. 华北地台南部中新元古界层序地层研究[M]. 北京: 地质出版社: 1 − 90

    Google Scholar

    Zhou H R, Wang Z Q, Cui X S, et al., 1999. Study of the Neoproterozoic strata on the southern of the North China Platform[M]. Beijing: Geological Publishing House: 1 − 90.

    Google Scholar

    [112] 周永章, 左仁广, 刘刚, 等, 2021. 数学地球科学跨越发展的十年: 大数据、人工智能算法正在改变地质学[J]. 矿物岩石地球化学通报, 40(3): 556 − 573, 777

    Google Scholar

    Zhou Y Z, Zuo R G, Liu G, et al., 2021. The great-leap-forward development of mathematical geoscience during 2010-2019: Big Data and Artificial Intelligence Algorithm are Changing Mathematical Geoscience[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 40(3): 556 − 573, 777.

    Google Scholar

    [113] 朱筱敏, 胡庆喜, 信荃麟, 等, 1992. 东濮凹陷东南部早第三纪古地理背景初探[J]. 石油大学学报(自然科学版), (4): 1-7

    Google Scholar

    Zhu X M, Hu Q X, Xin Q L, et al. , 1992. Paleogeographic settings of Paleogene in southeastern Dongpu depression[J]. Journal of China University of Petroleum(Edition of Natural Science), (4): 1-7.

    Google Scholar

    [114] Zwaan G, Jorissen F J, Stigter H, 1990. The Depth Dependency of Planktonic/benthic Foraminiferal Ratios: Constraints and Applications[J]. Marine Geology, 95(1): 1-16. doi: 10.1016/0025-3227(90)90016-D

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(3)

Article Metrics

Article views(1268) PDF downloads(287) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint