2024 Vol. 44, No. 4
Article Contents

DONG Zhen, LIANG Jin, CAO Zhimin, HE Huizhong, CHEN Liang, LU Rong. MORB trace element geochemistry in the eastern of southwest indian ridge and its indication for the composition of mantle source[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 99-107. doi: 10.16562/j.cnki.0256-1492.2021121501
Citation: DONG Zhen, LIANG Jin, CAO Zhimin, HE Huizhong, CHEN Liang, LU Rong. MORB trace element geochemistry in the eastern of southwest indian ridge and its indication for the composition of mantle source[J]. Marine Geology & Quaternary Geology, 2024, 44(4): 99-107. doi: 10.16562/j.cnki.0256-1492.2021121501

MORB trace element geochemistry in the eastern of southwest indian ridge and its indication for the composition of mantle source

More Information
  • The eastern of the southwest Indian ridge (E-SWIR) is located between 61° and 70° E, with relatively low melt supply. Most of the mid-ocean ridge basalts (MORB) produced in this area is a typical E-MORB with the characteristics of enrichment of incompatible elements and large ion lithophile elements. Based on the trace element geochemical data of basalt samples, the analysis of La/Sm, Zr/Nb and Lu/Tb shows that the E-SWIR mantle has obvious heterogeneity, which may be related to the axial variation of pyroxenite content in the mantle. Using the contents of rare earth elements Ce, Sm, Lu and Yb in combination with the simulation results of partial melting calculation, the role and influence of garnet in the mantle source area are further clarified, and it is believed that it may exist in the mantle as auriferous garnet pyroxene. The identification of the nature and occurrence form of eclogites in the E-SWIR mantle source region is the key to discuss the origin of E-MORB, mantle heterogeneity and the tectonic evolution of mid ocean ridge.

  • 加载中
  • [1] Le Roux P J, Le Roex A P, Schilling J G, et al. Mantle heterogeneity beneath the southern Mid-Atlantic Ridge: trace element evidence for contamination of ambient asthenospheric mantle[J]. Earth and Planetary Science Letters, 2002, 203(1):479-498. doi: 10.1016/S0012-821X(02)00832-4

    CrossRef Google Scholar

    [2] Sobolev A V, Hofmann A W, Kuzmin D V, et al. The amount of recycled crust in sources of mantle-derived melts[J]. Science, 2007, 316(5823):412-417. doi: 10.1126/science.1138113

    CrossRef Google Scholar

    [3] Zhang G L, Zong C L, Yin X B, et al. Geochemical constraints on a mixed pyroxenite-peridotite source for east Pacific Rise basalts[J]. Chemical Geology, 2012, 330-331:176-187. doi: 10.1016/j.chemgeo.2012.08.033

    CrossRef Google Scholar

    [4] Lambart S, Laporte D, Schiano P. Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: review of the experimental constraints[J]. Lithos, 2013, 160-161:14-36. doi: 10.1016/j.lithos.2012.11.018

    CrossRef Google Scholar

    [5] Paquet M, Hamelin C, Moreira M, et al. The isotopic (He, Ne, Sr, Nd, Hf, Pb) signature in the Indian mantle over 8.8 Ma[J]. Chemical Geology, 2020, 550:119741. doi: 10.1016/j.chemgeo.2020.119741

    CrossRef Google Scholar

    [6] Brunelli D, Paganelli E, Seyler M. Percolation of enriched melts during incremental open-system melting in the spinel field: a REE approach to abyssal peridotites from the southwest Indian Ridge[J]. Geochimica et Cosmochimica Acta, 2014, 127:190-203. doi: 10.1016/j.gca.2013.11.040

    CrossRef Google Scholar

    [7] Brunelli D, Cipriani A, Bonatti E. Thermal effects of pyroxenites on mantle melting below mid-ocean ridges[J]. Nature Geoscience, 2018, 11(7):520-525. doi: 10.1038/s41561-018-0139-z

    CrossRef Google Scholar

    [8] Paquet M, Cannat M, Brunelli D, et al. Effect of melt/mantle interactions on MORB chemistry at the easternmost southwest Indian Ridge (61◦–67◦ E)[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(11):4605-4640. doi: 10.1002/2016GC006385

    CrossRef Google Scholar

    [9] Muller M R, Minshull T A, White R S. Segmentation and melt supply at the southwest Indian Ridge[J]. Geology, 1999, 27(10):867-870. doi: 10.1130/0091-7613(1999)027<0867:SAMSAT>2.3.CO;2

    CrossRef Google Scholar

    [10] Cannat M, Rommevaux-Jestin C, Sauter D, et al. Formation of the axial relief at the very slow spreading southwest Indian Ridge (49° to 69°E)[J]. Journal of Geophysical Research:Solid Earth, 1999, 104(B10):22825-22843. doi: 10.1029/1999JB900195

    CrossRef Google Scholar

    [11] Cannat M, Rommevaux-Jestin C, Fujimoto H. Melt supply variations to a magma-poor ultra-slow spreading ridge (southwest Indian Ridge 61° to 69°E)[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(8):9104.

    Google Scholar

    [12] Pertermann M, Hirschmann M M. Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate[J]. Journal of Geophysical Research:Solid Earth, 2003, 108(B2):2125.

    Google Scholar

    [13] Pertermann M, Hirschmann M M. Anhydrous partial melting experiments on MORB-like eclogite: phase relations, phase compositions and mineral–melt partitioning of major elements at 2-3 GPa[J]. Journal of Petrology, 2003, 44(12):2173-2201. doi: 10.1093/petrology/egg074

    CrossRef Google Scholar

    [14] Ito G, Mahoney J J. Flow and melting of a heterogeneous mantle: 1. Method and importance to the geochemistry of ocean island and mid-ocean ridge basalts[J]. Earth and Planetary Science Letters, 2005, 230(1-2):29-46. doi: 10.1016/j.jpgl.2004.10.035

    CrossRef Google Scholar

    [15] Georgen J E, Kurz M D, Dick H J B, et al. Low 3He/4He ratios in basalt glasses from the western southwest Indian Ridge (10°-24°E)[J]. Earth and Planetary Science Letters, 2003, 206(3-4):509-528. doi: 10.1016/S0012-821X(02)01106-8

    CrossRef Google Scholar

    [16] Graham D W, Jenkins W J, Schilling J G, et al. Helium isotope geochemistry of mid-ocean ridge basalts from the south Atlantic[J]. Earth and Planetary Science Letters, 1992, 110(1-4):133-147. doi: 10.1016/0012-821X(92)90044-V

    CrossRef Google Scholar

    [17] Yang Z F, Li J, Liang W F, et al. On the chemical markers of pyroxenite contributions in continental basalts in Eastern China: implications for source lithology and the origin of basalts[J]. Earth-Science Reviews, 2016, 157:18-31. doi: 10.1016/j.earscirev.2016.04.001

    CrossRef Google Scholar

    [18] Yang Z F, Li J, Jiang Q B, et al. Using major element logratios to recognize compositional patterns of basalt: implications for source lithological and compositional heterogeneities[J]. Journal of Geophysical Research:Solid Earth, 2019, 124(4):3458-3490. doi: 10.1029/2018JB016145

    CrossRef Google Scholar

    [19] Le Roux V, Lee C T A, Turner S J. Zn/Fe systematics in mafic and ultramafic systems: implications for detecting major element heterogeneities in the earth’s mantle[J]. Geochimica et Cosmochimica Acta, 2010, 74(9):2779-2796. doi: 10.1016/j.gca.2010.02.004

    CrossRef Google Scholar

    [20] Le Roux V, Dasgupta R, Lee C T A. Mineralogical heterogeneities in the Earth’s mantle: constraints from Mn, Co, Ni and Zn partitioning during partial melting[J]. Earth and Planetary Science Letters, 2011, 307(3-4):395-408. doi: 10.1016/j.jpgl.2011.05.014

    CrossRef Google Scholar

    [21] Sauter D, Cannat M, Rouméjon S, et al. Continuous exhumation of mantle-derived rocks at the southwest Indian Ridge for 11 million years[J]. Nature Geoscience, 2013, 6(4):314-320. doi: 10.1038/ngeo1771

    CrossRef Google Scholar

    [22] Dong Z, Tao C H, Liang J, et al. Geochemistry of basalts from southwest Indian Ridge 64°E: implications for the mantle heterogeneity east of the Melville transform[J]. Minerals, 2021, 11(2):175. doi: 10.3390/min11020175

    CrossRef Google Scholar

    [23] Zhou H Y, Dick H J B. Thin crust as evidence for depleted mantle supporting the Marion Rise[J]. Nature, 2013, 494(7436):195-200. doi: 10.1038/nature11842

    CrossRef Google Scholar

    [24] Seyler M, Brunelli D, Toplis M J, et al. Multiscale chemical heterogeneities beneath the eastern southwest Indian Ridge (52°E-68°E): trace element compositions of along-axis dredged peridotites[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(9):Q0AC15. doi: 10.1029/2011GC003585

    CrossRef Google Scholar

    [25] 李献华, 刘颖, 涂湘林, 等. 硅酸盐岩石化学组成的ICP-AES和ICP-MS准确测定: 酸溶与碱熔分解样品方法的对比[J]. 地球化学, 2002, 31(3):289-294

    Google Scholar

    LI Xianhua, LIU Ying, TU Xianglin, et al. Precise determination of chemical compositions in silicate rocks using ICP-AES and ICP-MS: a comparative study of sample digestion techniques of alkali fusion and acid dissolution[J]. Geochimica, 2002, 31(3):289-294.]

    Google Scholar

    [26] Meyzen C M, Toplis M J, Humler E, et al. A discontinuity in mantle composition beneath the southwest Indian Ridge[J]. Nature, 2003, 421(6924):731-733. doi: 10.1038/nature01424

    CrossRef Google Scholar

    [27] Frey F A, Silva I G N, Huang S C, et al. Depleted components in the source of hotspot magmas: evidence from the Ninetyeast Ridge (Kerguelen)[J]. Earth and Planetary Science Letters, 2015, 426:293-304. doi: 10.1016/j.jpgl.2015.06.005

    CrossRef Google Scholar

    [28] Kelemen P B, Yogodzinski G M, Scholl D W. Along-strike variation in the Aleutian island arc: genesis of high Mg# andesite and implications for continental crust[M]//Eiler J. Inside the Subduction Factory. Washington: AGU, 2003: 223-276.

    Google Scholar

    [29] Donnelly K E, Goldstein S L, Langmuir C H, et al. Origin of enriched ocean ridge basalts and implications for mantle dynamics[J]. Earth and Planetary Science Letters, 2004, 226(3-4):347-366. doi: 10.1016/j.jpgl.2004.07.019

    CrossRef Google Scholar

    [30] Cushman B, Sinton J, Ito G, et al. Glass compositions, plume-ridge interaction, and hydrous melting along the Galapagos spreading center, 90.5°W to 98°W[J]. Geochemistry, Geophysics, Geosystems, 2013, 5(8):Q08E17.

    Google Scholar

    [31] 高山, 章军锋, 许文良, 等. 拆沉作用与华北克拉通破坏[J]. 科学通报, 2009, 54(14): 1962-1973

    Google Scholar

    GAO Shan, ZHANG Junfeng, XU Wenliang, et al. Delamination and destruction of the North China Craton[J]. Chinese Science Bulletin, 2009, 54(19): 3367-3378.]

    Google Scholar

    [32] 魏春景, 郑永飞. 大洋俯冲带变质作用、流体行为与岩浆作用[J]. 中国科学: 地球科学, 2020, 50(1): 1-27

    Google Scholar

    WEI Chunjing, ZHENG Yongfei. Metamorphism, fluid behavior and magmatism in oceanic subduction zones[J]. Science China Earth Sciences, 2020, 63(1): 52-77.]

    Google Scholar

    [33] 刘帅奇, 张贵宾. 榴辉岩部分熔融过程中的同位素分馏[J]. 岩石学报, 2021, 37(1): 95-112

    Google Scholar

    LIU Shuaiqi, ZHANG Guibin. Isotope fractionation during partial melting of eclogite[J]. Acta Petrologica Sinica, 37(1): 95-112.]

    Google Scholar

    [34] 王超, 金振民, 高山, 等. 华北克拉通岩石圈破坏的榴辉岩熔体-橄榄岩反应机制: 实验约束[J]. 中国科学: 地球科学, 2010, 40(5): 541-555

    Google Scholar

    WANG Chao, JIN Zhenmin, GAO Shan, et al. Eclogite-melt/peridotite reaction: experimental constrains on the destruction mechanism of the North China Craton[J]. Science China Earth Sciences, 2010, 53(6): 797-809.]

    Google Scholar

    [35] Hofmann A W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust[J]. Earth and Planetary Science Letters, 1988, 90(3):297-314. doi: 10.1016/0012-821X(88)90132-X

    CrossRef Google Scholar

    [36] Shen Y, Forsyth D W. Geochemical constraints on initial and final depths of melting beneath mid-ocean ridges[J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B2):2211-2237. doi: 10.1029/94JB02768

    CrossRef Google Scholar

    [37] White R S, McKenzie D, O'Nions R K. Oceanic crustal thickness from seismic measurements and rare earth element inversions[J]. Journal of Geophysical Research:Solid Earth, 1992, 97(B13):19683-19715. doi: 10.1029/92JB01749

    CrossRef Google Scholar

    [38] Bender J F, Langmuir C H, Hanson G N. Petrogenesis of basalt glasses from the Tamayo Region, east Pacific Rise[J]. Journal of Petrology, 1984, 25(1):213-254. doi: 10.1093/petrology/25.1.213

    CrossRef Google Scholar

    [39] Frey F A, Walker N, Stakes D, et al. Geochemical characteristics of basaltic glasses from the AMAR and FAMOUS axial valleys, Mid-Atlantic Ridge (36°-37°N): petrogenetic implications[J]. Earth and Planetary Science Letters, 1993, 115(1-4):117-136. doi: 10.1016/0012-821X(93)90217-W

    CrossRef Google Scholar

    [40] Blundy J D, Robinson J A C, Wood B J. Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus[J]. Earth and Planetary Science Letters, 1998, 160(3-4):493-504. doi: 10.1016/S0012-821X(98)00106-X

    CrossRef Google Scholar

    [41] Hirschmann M M, Stolper E M. A possible role for garnet pyroxenite in the origin of the "garnet signature" in MORB[J]. Contributions to Mineralogy and Petrology, 1996, 124(2):185-208. doi: 10.1007/s004100050184

    CrossRef Google Scholar

    [42] Hirschmann M M, Kogiso T, Baker M B, et al. Alkalic magmas generated by partial melting of garnet pyroxenite[J]. Geology, 2003, 31(6):481-484. doi: 10.1130/0091-7613(2003)031<0481:AMGBPM>2.0.CO;2

    CrossRef Google Scholar

    [43] Stracke A, Salters V J M, Sims K W W. Assessing the presence of garnet-pyroxenite in the mantle sources of basalts through combined hafnium-neodymium-thorium isotope systematics[J]. Geochemistry, Geophysics, Geosystems, 2013, 1(12):1006.

    Google Scholar

    [44] Gaffney A M, Nelson B K, Blichert-Toft J. Melting in the Hawaiian plume at 1-2 Ma as recorded at Maui Nui: the role of eclogite, peridotite, and source mixing[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(10):Q10L11.

    Google Scholar

    [45] 陈振宇, 王登红, 陈毓川, 等. 榴辉岩中金红石的矿物地球化学研究及其意义[J]. 地球科学:中国地质大学学报, 2006, 31(4):533-538,550

    Google Scholar

    CHEN Zhenyu, WANG Denghong, CHEN Yuchuan, et al. Mineral geochemistry of rutile in eclogite and its implications[J]. Earth Science:Journal of China University of Geosciences, 2006, 31(4):533-538,550.]

    Google Scholar

    [46] 梁金龙, 施泽明, 徐进勇, 等. 金红石榴辉岩: 一个可能的超球粒陨石Nb/Ta储库[J]. 地球科学进展, 2012, 27(10):1094-1099

    Google Scholar

    LIANG Jinlong, SHI Zeming, XU Jinyong, et al. Rutile-bearing eclogite: one of the possible reservoirs balancing the Nb-depleted silicate Earth[J]. Advances in Earth Science, 2012, 27(10):1094-1099.]

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(334) PDF downloads(49) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint