Citation: | ZHANG Yaowen, LI Haijun, ZHAO Qian, JIA Jinjun, WANG He. Hydrogeochemical characteristics of typical seawater intrusion in Xingcheng City[J]. Marine Geology Frontiers, 2024, 40(8): 32-41. doi: 10.16028/j.1009-2722.2023.291 |
To reveal the evolution of groundwater chemical composition and the complex hydrogeochemical interactions due to the seawater intrusion in Xingcheng coastal plain, Liaoning, NE China, 44 groundwater samples and 1 seawater sample were collected from the Caozhuang Town section at Xingcheng River to Shahouzuo Town section at Yantai River. The chemical composition, and hydrogen and oxygen isotopes of the samples were determined. The hydrogeochemical characteristics and formation processes in typical seawater intrusion areas and their variations were analyzed. Results show that, the chemical field of groundwater in the area exhibited obvious horizontal zonation, and the water quality changed from freshwater to brackish water and to saline water successively from inland to coastal areas. The chemical types of groundwater were mainly HCO3-Ca, HCO3·Cl-Ca, and SO4-Ca, while those of brackish water and salt water were mainly Cl-Na or Cl-Ca. Groundwater in the area was recharged by mainly atmospheric precipitation, with groundwater in the inland freshwater mainly controlled by dissolution and filtration processes, while brackish water was influenced by evaporation and mixing processes, leading to oxygen drift; The mixing ratio of seawater represented by Cl component with freshwater in brackish water ranges from 0.45% to 3.46%, while the mixing ratio of saline water was about 15.85%. The formation of brackish water and saline water was due to the combined effects of mixing, evaporation concentration, and cation exchange adsorption.
[1] | 张耀文,李海君,连晨艳,等. 辽宁省兴城市海水入侵程度的熵权属性识别评价[J]. 海洋环境科学,2022,41(5):774-782. |
[2] | 袁晓婕,黄向青,甘华阳,等. 海南岛南部沿岸地下水水化学要素变化及海水入侵特征[J]. 海洋地质前沿,2017,33(8):32-40. |
[3] | 李志威,张晓影,张明珠. 海水入侵指标对比分析与评价:以珠江口地下水含水层为例[J]. 海洋环境科学,2020,39(1):16-24. doi: 10.12111/j.mes20200103 |
[4] | 侯国华,高茂生,党显璋. 唐山曹妃甸浅层地下水水化学特征及咸化成因[J]. 地学前缘,2019,26(6):49-57. |
[5] | 张耀文. 海水入侵作用下滨海盐渍土演化过程研究[D]. 哈尔滨:中国地震局工程力学研究所,2022. |
[6] | 王玉雪. 山东龙口地区海水入侵过程中的水文地球化学作用研究[D]. 北京:中国地质大学(北京),2020. |
[7] | BELKHIRI L,BOUDOUKHA A,MOUNI L et al. Application of multivariate statistical methods and inverse geochemical modelingfor characterization of groundwater-a case study:Ain Azel Plain (Algeria)[J]. Geoderma,2010,159(3/4):390-398. |
[8] | CAROL E,KRUSE E,MASPLA J. Hydrochemical and isotopicalevidence of ground water salinization processes on the coastalplain of Samborombón Bay,Argentina[J]. Journal of Hydrology,2009,365(3/4):335-345. |
[9] | 祁惠惠,马传明,和泽康,等. 水文地球化学和环境同位素方法在地下水咸化中的研究与应用进展[J]. 安全与环境工程,2018,25(4):97-105. |
[10] | AHIALEY E K,KORTATSI B K,ANORNU G K,et al. Hydrogeochemical processes influencing groundwater quality in the Black Volta Basin of Ghana[J]. Research Journal of Applied Sciences Engineering and Technology,2015,11(9):975-982. doi: 10.19026/rjaset.11.2137 |
[11] | 赵倩,张耀文,迟宝明,等. 锦州市小凌河扇地地表水与地下水水化学特征[J]. 水电能源科学,2022,40(2):65-69. |
[12] | 侯国华,高茂生,叶思源,等. 黄河三角洲浅层地下水盐分来源及咸化过程研究[J]. 地学缘,2022,29(3):145-154. |
[13] | 岳冬冬,苏小四. 沂沭河下游平原地下水化学及氢氧稳定同位素特征[J]. 科学技术与工程,2016,16(16):13-19. doi: 10.3969/j.issn.1671-1815.2016.16.003 |
[14] | 李慧. 葫芦岛地区海水入侵区的成因及规律分析[J]. 吉林水利,2010(2):9-10,19. doi: 10.3969/j.issn.1009-2846.2010.02.003 |
[15] | 迟宝明,丁元芳,崔新颖,等. 沿海地区井盐水资源评价及其合理开发利用:以兴城现代渔业园区为例[J]. 吉林大学学报 (地球科学版),2007,37(5):955-960. |
[16] | 张人权. 梁杏. 靳孟贵,等. 水文地质学基础(第七版)[M]. 北京:地质出版社,2018:53-54. |
[17] | 张应华,仵彦卿,丁建强,等. 运用氧稳定同位素研究黑河中游盆地地下水与河水转化[J]. 冰川冻土,2005,27(1):106-110. |
[18] | 赵长荣,杨吉龙,肖国强,等. 大连大魏家水源地海水入侵过程中水文地球化学作用分析及定量模拟[J]. 地质调查与研究,2012,35(2):154-160. |
[19] | 刘贯群,朱利文,孙运晓. 大沽河下游地区地下咸水的水化学特征及成因[J]. 中国海洋大学学报(自然科版),2019,49(5):84-92. |
[20] | 何军,肖攀,彭轲,等. 江汉平原西部浅层孔隙水水文地球化学特征[J]. 中国地质调查,2019,6(5):36-42. |
[21] | 冯晨馨,邱隆伟,高茂生,等. 山东半岛北部泥质海岸带地下水水化学演化[J]. 海洋地质前沿,2022,38(12):16-25. |
[22] | 冯欣,张亚哲. 深州地区地下水离子比例系数分析研究[J]. 中国农村水利水电,2014,4:18-20,24. doi: 10.3969/j.issn.1007-2284.2014.02.005 |
[23] | 肖国强,杨吉龙,胡云壮,等. 秦皇岛洋-戴河滨海平原海水入侵过程水文化学识别[J]. 安全与环境工程,2014,21(2):32-39. doi: 10.3969/j.issn.1671-1556.2014.02.008 |
Schematic hydrogeological overview map of the study area
Relationship between TDS and major ions
Piper trilinear plot of different groundwater samples in the study area
Distribution of groundwater chemical types in the study area
δ2H /δ18O values among different water bodies in the study area
Relationship between Cl− concentration and δ18O in various water samples
Spatial distribution of mixing proportion represented by Cl − in groundwater of the study area
(γNa+-γCl−)/ ((γCa2++γMg2+)-(γSO42-+γHCO3−))
Chloride alkali index diagram
The Gibbs diagram of groundwater in the study area
γNa/γCl and γMg/γCa in the groundwater of the study area