Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 6
Article Contents

LI Ke, LI Jian, SHAO Yanqiu, LI Jing, ZHANG Weiyi, SHAO Yingying, ZHANG Tao, TIAN Chao, MA Jinwei, LI Shuhui, ZHU Ying. Research Progress on Tailings−based Composite Phase Change Materials[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 61-71. doi: 10.13779/j.cnki.issn1001-0076.2023.06.007
Citation: LI Ke, LI Jian, SHAO Yanqiu, LI Jing, ZHANG Weiyi, SHAO Yingying, ZHANG Tao, TIAN Chao, MA Jinwei, LI Shuhui, ZHU Ying. Research Progress on Tailings−based Composite Phase Change Materials[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 61-71. doi: 10.13779/j.cnki.issn1001-0076.2023.06.007

Research Progress on Tailings−based Composite Phase Change Materials

More Information
  • Mining industry produces a large amount of tailings annually in China. Currently, the treatment of tailings mainly includes mine backfill and valuable metal recovery. Which is difficult to realize the full utilization of tailings. The tailings contain quartz, feldspar, carbonate, silicate, and clay minerals, bestows them with good stability, a large specific area and rich pore structure. Solid−liquid phase change materials (solid−liquid PCMs) exhibit significant latent heat. However, they are prone to leakage during solid–liquid phase transition process. Utilizing tailings as carriers to load solid−liquid PCMs not only addresses the issue of leakage but also provides a valorization method for the resource utilization of tailings and reduces the burden on the ecological environment. Aiming at the resource utilization of tailings, this paper reviewed the types and physicochemical properties of tailings, the encapsulation, and preparation of tailings−based phase change materials, thermal property enhancement, and practical applications. Finally, the shortcomings of the current preparation of phase change materials from tailings and the outlook for future research were described. This information can serve as a useful reference for researchers and help advance the progress of utilizing tailings as a resource for phase change heat storage.

  • 加载中
  • [1] ZHANG Y, LIU J, SU Z, et al. Preparation of low−temperature composite phase change materials (C−PCMs) from modified blast furnace slag (MBFS)[J]. Construction and Building Materials, 2020, 238: 117717. doi: 10.1016/j.conbuildmat.2019.117717

    CrossRef Google Scholar

    [2] TANG B, WEI H, ZHAO D, et al. Light−heat conversion and thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Ti4O7 doping[J]. Solar Energy Materials and Solar Cells, 2017, 161: 183−189. doi: 10.1016/j.solmat.2016.12.003

    CrossRef Google Scholar

    [3] TAO Y B, HE Y L. A review of phase change material and performance enhancement method for latent heat storage system[J]. Renewable and Sustainable Energy Reviews, 2018, 93: 245−59. doi: 10.1016/j.rser.2018.05.028

    CrossRef Google Scholar

    [4] 黄港, 邱玮, 黄伟颖, 等. 相变储能材料的研究与发展[J]. 材料科学与工艺, 2022, 30(3): 80−96.

    Google Scholar

    HUANG G, QIU W, HUANG W Y, et al. Research and development of phase change energy storage materials[J]. Materials Science and Technology, 2022, 30(3): 80−96.

    Google Scholar

    [5] ZHANG Z, ZHANG Z, CHANG T, et al. Phase change material microcapsules with melamine resin shell via cellulose nanocrystal stabilized Pickering emulsion in−situ polymerization[J]. Chemical Engineering Journal, 2022, 428: 131164. doi: 10.1016/j.cej.2021.131164

    CrossRef Google Scholar

    [6] PIELICHOWSKA K, PIELICHOWSKI K. Phase change materials for thermal energy storage[J]. Progress in Materials Science, 2014, 65: 67−123. doi: 10.1016/j.pmatsci.2014.03.005

    CrossRef Google Scholar

    [7] AFTAB W, HUANG X, WU W, et al. Nanoconfined phase change materials for thermal energy applications[J]. Energy and Environmental Science, 2018, 11(6): 1392−1424. doi: 10.1039/C7EE03587J

    CrossRef Google Scholar

    [8] WEI Y, LI J, SUN F, et al. Leakage−proof phase change composites supported by biomass carbon aerogels from succulents[J]. Green Chemistry, 2018, 20(8): 1858−1865. doi: 10.1039/C7GC03595K

    CrossRef Google Scholar

    [9] RATHORE P K S, SHUKLA S K. Enhanced thermophysical properties of organic PCM through shape stabilization for thermal energy storage in buildings: A state of the art review[J]. Energy and Buildings, 2021, 236: 110799. doi: 10.1016/j.enbuild.2021.110799

    CrossRef Google Scholar

    [10] LIU P, GAO H, CHEN X, et al. In situ one−step construction of monolithic silica aerogel−based composite phase change materials for thermal protection[J]. Composites Part B:Engineering, 2020, 195: 108072. doi: 10.1016/j.compositesb.2020.108072

    CrossRef Google Scholar

    [11] 阎赞, 王想, 徐名特, 等. 尾矿资源化研究在铅锌尾矿中的应用[J]. 矿产综合利用, 2017(1): 1−5. doi: 10.3969/j.issn.1000-6532.2017.01.001

    CrossRef Google Scholar

    YAN Z, WANG X, XV M T, et al. Utilization situation and development trend of lead and zinc tailing resources[J]. Multipurpose Utilization of Mineral Resources, 2017(1): 1−5. doi: 10.3969/j.issn.1000-6532.2017.01.001

    CrossRef Google Scholar

    [12] BORTNIKOVA S B, YURKEVICH N V, GASKOVA O L, et al. Arsenic and metal quantities in abandoned arsenide tailings in dissolved, soluble, and volatile forms during 20 years of storage[J]. Chemical Geology, 2021, 586: 120623. doi: 10.1016/j.chemgeo.2021.120623

    CrossRef Google Scholar

    [13] HU S, XIONG X, LI X, et al. Spatial distribution characteristics, risk assessment and management strategies of tailings ponds in China[J]. Science of The Total Environment, 2024, 912: 169069. doi: 10.1016/j.scitotenv.2023.169069

    CrossRef Google Scholar

    [14] LV P, LIU C, RAO Z. Review on clay mineral−based form−stable phase change materials: preparation, characterization and applications[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 707−726. doi: 10.1016/j.rser.2016.10.014

    CrossRef Google Scholar

    [15] SARI A. Thermal energy storage characteristics of bentonite−based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials[J]. Energy Conversion and Management, 2016, 117: 132−141. doi: 10.1016/j.enconman.2016.02.078

    CrossRef Google Scholar

    [16] 张长青, 李其在, 李德先, 等. 尾矿资源化综合利用应用研究: 以京津冀崇礼矿产资源集中区为例[J]. 中国矿业, 2022, 31(7): 49−60.

    Google Scholar

    ZHANG C Q, LI Q Z, LI D X, et al, Study on application technology of comprehensive utilization of tailings: taking Chongli Mineral Resources Concentration Area as an example[J]. China Mining Magazine, 2022, 31(7): 49−60.

    Google Scholar

    [17] 杜艳强, 段文峰, 赵艳. 金属尾矿处置及资源化利用技术研究[J]. 中国矿业, 2021, 30(8): 57−61.

    Google Scholar

    DU Y Q, DUAN W F, ZHAO Y. Study on metal mine tailings disposal and resource utilization technology[J]. China Mining Magazine, 2021, 30(8): 57−61.

    Google Scholar

    [18] 刘玉林, 刘长淼, 刘红召, 等. 我国矿山尾矿利用技术及开发利用建议[J]. 矿产保护与利用, 2018(6): 140−144.

    Google Scholar

    LIU Y L, LIU C M, LIU H Z, et al. Utilization technology of mine tailings in China and exploitation suggestions[J]. Conservation and Utilization of Mineral Resources, 2018(6): 140−144.

    Google Scholar

    [19] PEREIRA M J, LIMA M M F, LIMA R M F. Calcination and characterisation studies of a Brazilian manganese ore tailing[J]. International Journal of Mineral Processing, 2014, 131: 26−30. doi: 10.1016/j.minpro.2014.08.003

    CrossRef Google Scholar

    [20] ZENG L, SUN H, PENG T, et al. Preparation of porous glass−ceramics from coal fly ash and asbestos tailings by high−temperature pore−forming[J]. Waste Management, 2020, 106: 184−192. doi: 10.1016/j.wasman.2020.03.008

    CrossRef Google Scholar

    [21] 耿真真, 李宏岩, 赵飞. 掺铁尾矿蒸压混凝土的性能研究[J]. 矿产综合利用: 2023(7): 1−5.

    Google Scholar

    GENG Z Z, LI H Y, ZHAO F, et al. Study on the performance of autoclaved concrete with iron tailings admixture[J]. Multipurpose Utilization of Mineral Resources, 2023(7): 1−5.

    Google Scholar

    [22] 余海燕, 王梦伟, 石译文. 铜尾矿泡沫陶瓷的组成对坯体性能的影响研究[J]. 天津城建大学学报, 2023, 29(5): 335−340.

    Google Scholar

    YV H Y, WANG M W, SHI Z W, et al. Influence of composition of copper tailings foam ceramics on body properties[J]. Journal of Tianjin Chengjian University, 2023, 29(5): 335−340.

    Google Scholar

    [23] 周雪娜, 关洪亮, 何东升, 等. 磷尾矿综合利用研究进展[J]. 广州化工, 2021, 49(5): 24−27.

    Google Scholar

    ZHOU X N, GUAN H L, HE D S, et al. Research progress on comprehensive utilization by phosphate tailings[J]. Guangzhou Chemical Industry, 2021, 49(5): 24−27.

    Google Scholar

    [24] 李思瑶, 王福彤, 王冠宇, 等. 水泥稳定石墨尾矿的无侧限抗压强度试验[J]. 低温建筑技术, 2023, 45(7): 38−45.

    Google Scholar

    LI S Y, WANG F T, WANG G Y, et al. Road performance studies of cement stabilized graphite tailings[J]. Low Temperature Architecture Technology, 2023, 45(7): 38−45.

    Google Scholar

    [25] 杨会康. 固废基中高温复合相变储热材料的制备及其性能优化研究[D]. 济南: 齐鲁工业大学, 2023.

    Google Scholar

    YANG H K. Preparation and performance optimization of medium and high temperature composite phase change heat storage materials based on solid waste[D]. Ji’nan: Qilu University of Technology, 2023.

    Google Scholar

    [26] 王前, 彭少伟, 卢昊, 等. 高岭土尾矿综合回收选矿试验研究[J]. 陶瓷, 2021(8): 59−62.

    Google Scholar

    WANG Q, PENG S W, LU H, et al. Experimental study on comprehensive recovery and beneficiation of kaolin tailings[J]. Ceramics, 2021(8): 59−62.

    Google Scholar

    [27] LIU T, TANG Y, HAN L, et al. Recycling of harmful waste lead−zinc mine tailings and fly ash for preparation of inorganic porous ceramics[J]. Ceramics International, 2017, 43(6): 4910−4918. doi: 10.1016/j.ceramint.2016.12.142

    CrossRef Google Scholar

    [28] ZHANG Y, ZHANG J, WU L, et al. Extraction of lithium and aluminum from bauxite mine tailings by mixed acid treatment without roasting[J]. Journal of Hazardous Materials, 2021, 404: 124044. doi: 10.1016/j.jhazmat.2020.124044

    CrossRef Google Scholar

    [29] XIE M, LIU F, ZHAO H, et al. Mineral phase transformation in coal gangue by high temperature calcination and high−efficiency separation of alumina and silica minerals[J]. Journal of Materials Research and Technology, 2021, 14: 2281−2288. doi: 10.1016/j.jmrt.2021.07.129

    CrossRef Google Scholar

    [30] ZHANG X, ZHANG H, LIANG Q, et al. Resource utilization of solid waste in the field of phase change thermal energy storage[J]. Journal of Energy Storage, 2023, 58: 106362. doi: 10.1016/j.est.2022.106362

    CrossRef Google Scholar

    [31] WEI H, XIE X, LI X, et al. Preparation and characterization of capric−myristic−stearic acid eutectic mixture/modified expanded vermiculite composite as a form−stable phase change material[J]. Applied Energy, 2016, 178: 616−623. doi: 10.1016/j.apenergy.2016.06.109

    CrossRef Google Scholar

    [32] ZHANG M, CHENG H, WANG C, et al. Kaolinite nanotube−stearic acid composite as a form−stable phase change material for thermal energy storage[J]. Applied Clay Science, 2021, 201: 105930. doi: 10.1016/j.clay.2020.105930

    CrossRef Google Scholar

    [33] THANAKKASARANEE S, SEO J. Effect of halloysite nanotubes on shape stabilities of polyethylene glycol−based composite phase change materials[J]. International Journal of Heat and Mass Transfer, 2019, 132: 154−161. doi: 10.1016/j.ijheatmasstransfer.2018.11.160

    CrossRef Google Scholar

    [34] MIAO W, GAN S, LI X, et al. A triply synergistic method for palygorskite activation to effectively impregnate phase change materials (PCMs) for thermal energy storage[J]. Applied Clay Science, 2020, 189: 105530. doi: 10.1016/j.clay.2020.105530

    CrossRef Google Scholar

    [35] YANG Y, PANG Y, LIU Y, et al. Preparation and thermal properties of polyethylene glycol/expanded graphite as novel form−stable phase change material for indoor energy saving[J]. Materials Letters, 2018, 216: 220−223. doi: 10.1016/j.matlet.2018.01.025

    CrossRef Google Scholar

    [36] SARı A, BICER A, AL−SULAIMAN F A, et al. Diatomite/CNTs/PEG composite PCMs with shape−stabilized and improved thermal conductivity: Preparation and thermal energy storage properties[J]. Energy and Buildings, 2018, 164: 166−175. doi: 10.1016/j.enbuild.2018.01.009

    CrossRef Google Scholar

    [37] SU W, DARKWA J, KOKOGIANNAKIS G. Review of solid−liquid phase change materials and their encapsulation technologies[J]. Renewable and Sustainable Energy Reviews, 2015, 48: 373−391. doi: 10.1016/j.rser.2015.04.044

    CrossRef Google Scholar

    [38] WANG Y, SONG Y, LI S, et al. Thermophysical properties of three−dimensional palygorskite based composite phase change materials[J]. Applied Clay Science, 2020, 184: 105367. doi: 10.1016/j.clay.2019.105367

    CrossRef Google Scholar

    [39] YI H, AI Z, ZHAO Y, et al. Design of 3D−network montmorillonite nanosheet/stearic acid shape−stabilized phase change materials for solar energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 204: 110233. doi: 10.1016/j.solmat.2019.110233

    CrossRef Google Scholar

    [40] AZIZ A, STOCKER O, EL AMRANI EL HASSANI I E, et al. Effect of blast−furnace slag on physicochemical properties of pozzolan−based geopolymers[J]. Materials Chemistry and Physics, 2021, 258: 123880. doi: 10.1016/j.matchemphys.2020.123880

    CrossRef Google Scholar

    [41] EDRAKI M, BAUMGARTL T, MANLAPIG E, et al. Designing mine tailings for better environmental, social and economic outcomes: A review of alternative approaches[J]. Journal of Cleaner Production, 2014, 84(1): 411−420.

    Google Scholar

    [42] CHEN Y, ZHANG Y, CHEN T, et al. Preparation of eco−friendly construction bricks from hematite tailings[J]. Construction and Building Materials, 2011, 25(4): 2107−2111. doi: 10.1016/j.conbuildmat.2010.11.025

    CrossRef Google Scholar

    [43] DAS S K, KUMAR S, RAMACHANDRARAO P. Exploitation of iron ore tailing for the development of ceramic tiles[J]. Waste Management, 2000, 20(8): 725−729. doi: 10.1016/S0956-053X(00)00034-9

    CrossRef Google Scholar

    [44] AHMARI S, ZHANG L. Production of eco−friendly bricks from copper mine tailings through geopolymerization[J]. Construction and Building Materials, 2012, 29: 323−331. doi: 10.1016/j.conbuildmat.2011.10.048

    CrossRef Google Scholar

    [45] 蒋骞, 潘大伟, 艾天, 等. 铁尾矿与采剥废石基多孔陶瓷复合相变储能材料的制备与表征[J]. 化工矿物与加工, 2023, 52(5): 24−31.

    Google Scholar

    JIANG Q, PAN D W, AI T, et al. Reparation and characterization of porous ceramic matrix for composite phase change energy storage materials using iron tailings and mining−stripping waste rock[J]. Industrial Minerals & Processing, 2023, 52(5): 24−31.

    Google Scholar

    [46] LI R, ZHOU Y, DUAN X. A novel composite phase change material with paraffin wax in tailings porous ceramics[J]. Applied Thermal Engineering, 2019, 151: 115−123. doi: 10.1016/j.applthermaleng.2019.01.104

    CrossRef Google Scholar

    [47] HUANG Y, HU N, YE Y, et al. Preparation and pore−forming mechanism of MgO−Al2O3–CaO−based porous ceramics using phosphorus tailings[J]. Ceramics International, 2022, 48(20): 29882−29891. doi: 10.1016/j.ceramint.2022.06.253

    CrossRef Google Scholar

    [48] ZHANG J, ZHANG X, WAN Y, et al. Preparation and thermal energy properties of paraffin/halloysite nanotube composite as form−stable phase change material[J]. Solar Energy, 2012, 86(5): 1142−1148. doi: 10.1016/j.solener.2012.01.002

    CrossRef Google Scholar

    [49] FU W, ZOU T, LIANG X, et al. Thermal properties and thermal conductivity enhancement of composite phase change material using sodium acetate trihydrate–urea/expanded graphite for radiant floor heating system[J]. Applied Thermal Engineering, 2018, 138: 618−626. doi: 10.1016/j.applthermaleng.2018.04.102

    CrossRef Google Scholar

    [50] LI D, CHENG X, LI Y, et al. Effect of MOF derived hierarchical Co3O4/expanded graphite on thermal performance of stearic acid phase change material[J]. Solar Energy, 2018, 171: 142−149. doi: 10.1016/j.solener.2018.06.062

    CrossRef Google Scholar

    [51] DONG K, GU X, PENG L, et al. Recent advancements in typical mineral−encapsulated form−stable phase change materials for thermal energy storage[J]. Journal of Energy Storage, 2022, 52: 104931. doi: 10.1016/j.est.2022.104931

    CrossRef Google Scholar

    [52] LIU S, YANG H. Composite of coal−series kaolinite and capric−lauric acid as form−stable phase−change material[J]. Energy Technology, 2015, 3(1): 77−83. doi: 10.1002/ente.201402125

    CrossRef Google Scholar

    [53] ZHOU Y, SUN W, LING Z, et al. Hydrophilic modification of expanded graphite to prepare a high−performance composite phase change block containing a hydrate salt[J]. Industrial and Engineering Chemistry Research, 2017, 56(50): 14799−14806. doi: 10.1021/acs.iecr.7b03986

    CrossRef Google Scholar

    [54] JIANG F, GE Z, LING X, et al. Improved thermophysical properties of shape−stabilized NaNO3 using a modified diatomite−based porous ceramic for solar thermal energy storage[J]. Renewable Energy, 2021, 179: 327−338. doi: 10.1016/j.renene.2021.07.023

    CrossRef Google Scholar

    [55] REN S, LI J, HUANG K, et al. Effect of composite orders of graphene oxide on thermal properties of Na2HPO4•12H2O/expanded vermiculite composite phase change materials[J]. Journal of Energy Storage, 2021, 41: 102980. doi: 10.1016/j.est.2021.102980

    CrossRef Google Scholar

    [56] YANG Z, LI J, LUAN X, et al. Effects of acid leaching and organic intercalation on the thermophysical properties of paraffin/expanded vermiculite composite phase change materials[J]. Applied Clay Science, 2020, 196: 105754. doi: 10.1016/j.clay.2020.105754

    CrossRef Google Scholar

    [57] CHENG J, NIU S, KANG M, et al. The thermal behavior and flame−retardant performance of phase change material microcapsules with modified carbon nanotubes[J]. Energy, 2022, 240: 122821. doi: 10.1016/j.energy.2021.122821

    CrossRef Google Scholar

    [58] 胡勇, 杨浩坤, 邓君, 等. 高导热低热膨胀Al−20%Si/石墨片复合材料的制备与性能研究[J]. 东莞理工学院学报, 2021, 28(1): 118−122.

    Google Scholar

    HU Y, YANG H K, DENG J, et al. Preparation and properties of Al−20% Si/Graphite flake with high thermal conductivity and low thermal expansion[J]. Journal of Dongguan University of Technology, 2021, 28(1): 118−122.

    Google Scholar

    [59] PARK S S, KIM N J. Influence of the oxidation treatment and the average particle diameter of graphene for thermal conductivity enhancement[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1911−1915. doi: 10.1016/j.jiec.2013.09.011

    CrossRef Google Scholar

    [60] LV P, DING M, LIU C, et al. Experimental investigation on thermal properties and thermal performance enhancement of octadecanol/expanded perlite form stable phase change materials for efficient thermal energy storage[J]. Renewable Energy, 2019, 131: 911−922. doi: 10.1016/j.renene.2018.07.102

    CrossRef Google Scholar

    [61] LU Z, XU B, ZHANG J, et al. Preparation and characterization of expanded perlite/paraffin composite as form−stable phase change material[J]. Solar Energy, 2014, 108: 460−466. doi: 10.1016/j.solener.2014.08.008

    CrossRef Google Scholar

    [62] WANG H, DENG Y, WU F, et al. Effect of dopamine−modified expanded vermiculite on phase change behavior and heat storage characteristic of polyethylene glycol[J]. Chemical Engineering Journal, 2021, 415: 128992. doi: 10.1016/j.cej.2021.128992

    CrossRef Google Scholar

    [63] CHIU C W, HUANG T K, WANG Y C, et al. Intercalation strategies in clay/polymer hybrids[J]. Progress in Polymer Science, 2014, 39(3): 443−485. doi: 10.1016/j.progpolymsci.2013.07.002

    CrossRef Google Scholar

    [64] BABAPOOR A, KARIMI G. Thermal properties measurement and heat storage analysis of paraffinnanoparticles composites phase change material: Comparison and optimization[J]. Applied Thermal Engineering, 2015, 90: 945−951. doi: 10.1016/j.applthermaleng.2015.07.083

    CrossRef Google Scholar

    [65] ŞAHAN N, FOIS M, PAKSOY H. Improving thermal conductivity phase change materials − A study of paraffin nanomagnetite composites[J]. Solar Energy Materials and Solar Cells, 2015, 137: 61−67. doi: 10.1016/j.solmat.2015.01.027

    CrossRef Google Scholar

    [66] ZHU Y, SHEN X, BAO D, et al. Nano SiC enhancement in the BN micro structure for high thermal conductivity epoxy composite[J]. Journal of Polymer Research, 2021, 28: 1−10. doi: 10.1007/s10965-020-02155-9

    CrossRef Google Scholar

    [67] HAN L, ZHANG X, JI J, et al. Research progress on the influence of nano−additives on phase change materials[J]. Journal of Energy Storage, 2022, 55: 105807. doi: 10.1016/j.est.2022.105807

    CrossRef Google Scholar

    [68] QIAN T, ZHU S, WANG H, et al. Comparative study of carbon nanoparticles and single−walled carbon nanotube for light−heat conversion and thermal conductivity enhancement of the multifunctional PEG/Diatomite composite phase change material[J]. ACS Applied Materials and Interfaces, 2019, 11(33): 29698−29707. doi: 10.1021/acsami.9b04349

    CrossRef Google Scholar

    [69] XU S, ZHANG X, HUANG Z, et al. Thermal conductivity enhanced polyethylene glycol/expanded perlite shape−stabilized composite phase change materials with Cu powder for thermal energy storage[J]. Materials Research Express, 2018, 5(9): 095503. doi: 10.1088/2053-1591/aad5c0

    CrossRef Google Scholar

    [70] ZHAN W, ZHAO Y, YUAN Y, et al. Development of 2D−Mt/SA/AgNPs microencapsulation phase change materials for solar energy storage with enhancement of thermal conductivity and latent heat capacity[J]. Solar Energy Materials and Solar Cells, 2019, 201: 110090. doi: 10.1016/j.solmat.2019.110090

    CrossRef Google Scholar

    [71] DENG Y, LI J, NIAN H, et al. Design and preparation of shape−stabilized composite phase change material with high thermal reliability via encapsulating polyethylene glycol into flower−like TiO2 nanostructure for thermal energy storage[J]. Applied Thermal Engineering, 2017, 114: 328−336. doi: 10.1016/j.applthermaleng.2016.11.082

    CrossRef Google Scholar

    [72] HASBI S, NORAZMAN N, SAHARUDIN M S. Effects of titanium oxide and graphene as nano−fillers on the thermal conductivity of biobased phase change materials as latent thermal heat storage[J]. Materials Today:Proceedings, 2023, 75: 181−187. doi: 10.1016/j.matpr.2022.11.426

    CrossRef Google Scholar

    [73] WANG H, LI Y, YIN B, et al. Synthesis of cordierite foam ceramics from kyanite tailings and simulated application effects[J]. Materials Today Communications, 2022, 33: 104510. doi: 10.1016/j.mtcomm.2022.104510

    CrossRef Google Scholar

    [74] GAO H, LIU H, LIAO L, et al. A novel inorganic thermal insulation material utilizing perlite tailings[J]. Energy and Buildings, 2019, 190: 25−33. doi: 10.1016/j.enbuild.2019.02.031

    CrossRef Google Scholar

    [75] 王鹏昕. 微纳铁尾矿砂/SiO2气凝胶保温隔热建筑新材料的制备及其参数影响规律[D]. 南昌: 南昌航空大学, 2022.

    Google Scholar

    WANG P X. Preparation of new material for micro−nano iron tailing Sand/SiO2 aerogel thermal insulation building and laws of parameter influence[D]. Nanchang: Nanchang Hangkong University, 2022.

    Google Scholar

    [76] DU Y, CHEN J, HAN Z, et al. A review on solutions for improving rutting resistance of asphalt pavement and test methods[J]. Construction and Building Materials, 2018, 168: 893−905. doi: 10.1016/j.conbuildmat.2018.02.151

    CrossRef Google Scholar

    [77] ZHANG D, CHEN M, WU S, et al. Preparation of expanded graphite/polyethylene glycol composite phase change material for thermoregulation of asphalt binder[J]. Construction and Building Materials, 2018, 169: 513−521. doi: 10.1016/j.conbuildmat.2018.02.167

    CrossRef Google Scholar

    [78] 刘溢. 利用石墨尾矿制备太阳能储热陶瓷的研究[D]. 武汉: 武汉理工大学, 2018.

    Google Scholar

    LIU Y. Study of the thermal storage ceramic from graphite tailings[D]. Wuhan: Wuhan University of Technology, 2018.

    Google Scholar

    [79] 吴建锋, 葛海鹏, 徐晓虹, 等. 用铁尾矿制备太阳能陶瓷蓄热材料的研究[C]//中国硅酸盐学会陶瓷分会, 山东省淄博市科技局, 山东硅元新型材料有限责任公司, 武汉理工大学硅酸盐建筑材料国家重点实验室, 2015.

    Google Scholar

    WU J F, GE H P, XV X H, et al. Study and preparation of ceramic thermal storage material from iron tailings for solar thermal power generation[C]∥Advanced ceramics branch of the chinese ceramic society, Zibo Science and Technology Bureau, Shandong Province, Shandong Guiyuan Advanced Ceramics Co., Ltd, State Key Laboratory of Silicate Building Materials, Wuhan University of Technology, 2015.

    Google Scholar

    [80] GUELPA E, VERDA V. Thermal energy storage in district heating and cooling systems: a review[J]. Applied Energy, 2019, 252: 113474. doi: 10.1016/j.apenergy.2019.113474

    CrossRef Google Scholar

    [81] SUN W, LIANG G, FENG F, et al. Study on sodium acetate trihydrate−expand graphite−carbon nanotubes composite phase change materials with enhanced thermal conductivity for waste heat recovery[J]. Journal of Energy Storage, 2022, 55: 105857. doi: 10.1016/j.est.2022.105857

    CrossRef Google Scholar

    [82] CHAI Z, CHEN X, FANG M, et al. Fabrication and properties of high−thermal−storage RTO ceramics using bauxite tailings and red mud[J]. Ceramics International, 2023, 49(19): 31342−31350. doi: 10.1016/j.ceramint.2023.07.082

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(4)

Article Metrics

Article views(429) PDF downloads(36) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint