Citation: | LI Ke, LI Jian, SHAO Yanqiu, LI Jing, ZHANG Weiyi, SHAO Yingying, ZHANG Tao, TIAN Chao, MA Jinwei, LI Shuhui, ZHU Ying. Research Progress on Tailings−based Composite Phase Change Materials[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 61-71. doi: 10.13779/j.cnki.issn1001-0076.2023.06.007 |
Mining industry produces a large amount of tailings annually in China. Currently, the treatment of tailings mainly includes mine backfill and valuable metal recovery. Which is difficult to realize the full utilization of tailings. The tailings contain quartz, feldspar, carbonate, silicate, and clay minerals, bestows them with good stability, a large specific area and rich pore structure. Solid−liquid phase change materials (solid−liquid PCMs) exhibit significant latent heat. However, they are prone to leakage during solid–liquid phase transition process. Utilizing tailings as carriers to load solid−liquid PCMs not only addresses the issue of leakage but also provides a valorization method for the resource utilization of tailings and reduces the burden on the ecological environment. Aiming at the resource utilization of tailings, this paper reviewed the types and physicochemical properties of tailings, the encapsulation, and preparation of tailings−based phase change materials, thermal property enhancement, and practical applications. Finally, the shortcomings of the current preparation of phase change materials from tailings and the outlook for future research were described. This information can serve as a useful reference for researchers and help advance the progress of utilizing tailings as a resource for phase change heat storage.
[1] | ZHANG Y, LIU J, SU Z, et al. Preparation of low−temperature composite phase change materials (C−PCMs) from modified blast furnace slag (MBFS)[J]. Construction and Building Materials, 2020, 238: 117717. doi: 10.1016/j.conbuildmat.2019.117717 |
[2] | TANG B, WEI H, ZHAO D, et al. Light−heat conversion and thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Ti4O7 doping[J]. Solar Energy Materials and Solar Cells, 2017, 161: 183−189. doi: 10.1016/j.solmat.2016.12.003 |
[3] | TAO Y B, HE Y L. A review of phase change material and performance enhancement method for latent heat storage system[J]. Renewable and Sustainable Energy Reviews, 2018, 93: 245−59. doi: 10.1016/j.rser.2018.05.028 |
[4] | 黄港, 邱玮, 黄伟颖, 等. 相变储能材料的研究与发展[J]. 材料科学与工艺, 2022, 30(3): 80−96. HUANG G, QIU W, HUANG W Y, et al. Research and development of phase change energy storage materials[J]. Materials Science and Technology, 2022, 30(3): 80−96. |
[5] | ZHANG Z, ZHANG Z, CHANG T, et al. Phase change material microcapsules with melamine resin shell via cellulose nanocrystal stabilized Pickering emulsion in−situ polymerization[J]. Chemical Engineering Journal, 2022, 428: 131164. doi: 10.1016/j.cej.2021.131164 |
[6] | PIELICHOWSKA K, PIELICHOWSKI K. Phase change materials for thermal energy storage[J]. Progress in Materials Science, 2014, 65: 67−123. doi: 10.1016/j.pmatsci.2014.03.005 |
[7] | AFTAB W, HUANG X, WU W, et al. Nanoconfined phase change materials for thermal energy applications[J]. Energy and Environmental Science, 2018, 11(6): 1392−1424. doi: 10.1039/C7EE03587J |
[8] | WEI Y, LI J, SUN F, et al. Leakage−proof phase change composites supported by biomass carbon aerogels from succulents[J]. Green Chemistry, 2018, 20(8): 1858−1865. doi: 10.1039/C7GC03595K |
[9] | RATHORE P K S, SHUKLA S K. Enhanced thermophysical properties of organic PCM through shape stabilization for thermal energy storage in buildings: A state of the art review[J]. Energy and Buildings, 2021, 236: 110799. doi: 10.1016/j.enbuild.2021.110799 |
[10] | LIU P, GAO H, CHEN X, et al. In situ one−step construction of monolithic silica aerogel−based composite phase change materials for thermal protection[J]. Composites Part B:Engineering, 2020, 195: 108072. doi: 10.1016/j.compositesb.2020.108072 |
[11] | 阎赞, 王想, 徐名特, 等. 尾矿资源化研究在铅锌尾矿中的应用[J]. 矿产综合利用, 2017(1): 1−5. doi: 10.3969/j.issn.1000-6532.2017.01.001 YAN Z, WANG X, XV M T, et al. Utilization situation and development trend of lead and zinc tailing resources[J]. Multipurpose Utilization of Mineral Resources, 2017(1): 1−5. doi: 10.3969/j.issn.1000-6532.2017.01.001 |
[12] | BORTNIKOVA S B, YURKEVICH N V, GASKOVA O L, et al. Arsenic and metal quantities in abandoned arsenide tailings in dissolved, soluble, and volatile forms during 20 years of storage[J]. Chemical Geology, 2021, 586: 120623. doi: 10.1016/j.chemgeo.2021.120623 |
[13] | HU S, XIONG X, LI X, et al. Spatial distribution characteristics, risk assessment and management strategies of tailings ponds in China[J]. Science of The Total Environment, 2024, 912: 169069. doi: 10.1016/j.scitotenv.2023.169069 |
[14] | LV P, LIU C, RAO Z. Review on clay mineral−based form−stable phase change materials: preparation, characterization and applications[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 707−726. doi: 10.1016/j.rser.2016.10.014 |
[15] | SARI A. Thermal energy storage characteristics of bentonite−based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials[J]. Energy Conversion and Management, 2016, 117: 132−141. doi: 10.1016/j.enconman.2016.02.078 |
[16] | 张长青, 李其在, 李德先, 等. 尾矿资源化综合利用应用研究: 以京津冀崇礼矿产资源集中区为例[J]. 中国矿业, 2022, 31(7): 49−60. ZHANG C Q, LI Q Z, LI D X, et al, Study on application technology of comprehensive utilization of tailings: taking Chongli Mineral Resources Concentration Area as an example[J]. China Mining Magazine, 2022, 31(7): 49−60. |
[17] | 杜艳强, 段文峰, 赵艳. 金属尾矿处置及资源化利用技术研究[J]. 中国矿业, 2021, 30(8): 57−61. DU Y Q, DUAN W F, ZHAO Y. Study on metal mine tailings disposal and resource utilization technology[J]. China Mining Magazine, 2021, 30(8): 57−61. |
[18] | 刘玉林, 刘长淼, 刘红召, 等. 我国矿山尾矿利用技术及开发利用建议[J]. 矿产保护与利用, 2018(6): 140−144. LIU Y L, LIU C M, LIU H Z, et al. Utilization technology of mine tailings in China and exploitation suggestions[J]. Conservation and Utilization of Mineral Resources, 2018(6): 140−144. |
[19] | PEREIRA M J, LIMA M M F, LIMA R M F. Calcination and characterisation studies of a Brazilian manganese ore tailing[J]. International Journal of Mineral Processing, 2014, 131: 26−30. doi: 10.1016/j.minpro.2014.08.003 |
[20] | ZENG L, SUN H, PENG T, et al. Preparation of porous glass−ceramics from coal fly ash and asbestos tailings by high−temperature pore−forming[J]. Waste Management, 2020, 106: 184−192. doi: 10.1016/j.wasman.2020.03.008 |
[21] | 耿真真, 李宏岩, 赵飞. 掺铁尾矿蒸压混凝土的性能研究[J]. 矿产综合利用: 2023(7): 1−5. GENG Z Z, LI H Y, ZHAO F, et al. Study on the performance of autoclaved concrete with iron tailings admixture[J]. Multipurpose Utilization of Mineral Resources, 2023(7): 1−5. |
[22] | 余海燕, 王梦伟, 石译文. 铜尾矿泡沫陶瓷的组成对坯体性能的影响研究[J]. 天津城建大学学报, 2023, 29(5): 335−340. YV H Y, WANG M W, SHI Z W, et al. Influence of composition of copper tailings foam ceramics on body properties[J]. Journal of Tianjin Chengjian University, 2023, 29(5): 335−340. |
[23] | 周雪娜, 关洪亮, 何东升, 等. 磷尾矿综合利用研究进展[J]. 广州化工, 2021, 49(5): 24−27. ZHOU X N, GUAN H L, HE D S, et al. Research progress on comprehensive utilization by phosphate tailings[J]. Guangzhou Chemical Industry, 2021, 49(5): 24−27. |
[24] | 李思瑶, 王福彤, 王冠宇, 等. 水泥稳定石墨尾矿的无侧限抗压强度试验[J]. 低温建筑技术, 2023, 45(7): 38−45. LI S Y, WANG F T, WANG G Y, et al. Road performance studies of cement stabilized graphite tailings[J]. Low Temperature Architecture Technology, 2023, 45(7): 38−45. |
[25] | 杨会康. 固废基中高温复合相变储热材料的制备及其性能优化研究[D]. 济南: 齐鲁工业大学, 2023. YANG H K. Preparation and performance optimization of medium and high temperature composite phase change heat storage materials based on solid waste[D]. Ji’nan: Qilu University of Technology, 2023. |
[26] | 王前, 彭少伟, 卢昊, 等. 高岭土尾矿综合回收选矿试验研究[J]. 陶瓷, 2021(8): 59−62. WANG Q, PENG S W, LU H, et al. Experimental study on comprehensive recovery and beneficiation of kaolin tailings[J]. Ceramics, 2021(8): 59−62. |
[27] | LIU T, TANG Y, HAN L, et al. Recycling of harmful waste lead−zinc mine tailings and fly ash for preparation of inorganic porous ceramics[J]. Ceramics International, 2017, 43(6): 4910−4918. doi: 10.1016/j.ceramint.2016.12.142 |
[28] | ZHANG Y, ZHANG J, WU L, et al. Extraction of lithium and aluminum from bauxite mine tailings by mixed acid treatment without roasting[J]. Journal of Hazardous Materials, 2021, 404: 124044. doi: 10.1016/j.jhazmat.2020.124044 |
[29] | XIE M, LIU F, ZHAO H, et al. Mineral phase transformation in coal gangue by high temperature calcination and high−efficiency separation of alumina and silica minerals[J]. Journal of Materials Research and Technology, 2021, 14: 2281−2288. doi: 10.1016/j.jmrt.2021.07.129 |
[30] | ZHANG X, ZHANG H, LIANG Q, et al. Resource utilization of solid waste in the field of phase change thermal energy storage[J]. Journal of Energy Storage, 2023, 58: 106362. doi: 10.1016/j.est.2022.106362 |
[31] | WEI H, XIE X, LI X, et al. Preparation and characterization of capric−myristic−stearic acid eutectic mixture/modified expanded vermiculite composite as a form−stable phase change material[J]. Applied Energy, 2016, 178: 616−623. doi: 10.1016/j.apenergy.2016.06.109 |
[32] | ZHANG M, CHENG H, WANG C, et al. Kaolinite nanotube−stearic acid composite as a form−stable phase change material for thermal energy storage[J]. Applied Clay Science, 2021, 201: 105930. doi: 10.1016/j.clay.2020.105930 |
[33] | THANAKKASARANEE S, SEO J. Effect of halloysite nanotubes on shape stabilities of polyethylene glycol−based composite phase change materials[J]. International Journal of Heat and Mass Transfer, 2019, 132: 154−161. doi: 10.1016/j.ijheatmasstransfer.2018.11.160 |
[34] | MIAO W, GAN S, LI X, et al. A triply synergistic method for palygorskite activation to effectively impregnate phase change materials (PCMs) for thermal energy storage[J]. Applied Clay Science, 2020, 189: 105530. doi: 10.1016/j.clay.2020.105530 |
[35] | YANG Y, PANG Y, LIU Y, et al. Preparation and thermal properties of polyethylene glycol/expanded graphite as novel form−stable phase change material for indoor energy saving[J]. Materials Letters, 2018, 216: 220−223. doi: 10.1016/j.matlet.2018.01.025 |
[36] | SARı A, BICER A, AL−SULAIMAN F A, et al. Diatomite/CNTs/PEG composite PCMs with shape−stabilized and improved thermal conductivity: Preparation and thermal energy storage properties[J]. Energy and Buildings, 2018, 164: 166−175. doi: 10.1016/j.enbuild.2018.01.009 |
[37] | SU W, DARKWA J, KOKOGIANNAKIS G. Review of solid−liquid phase change materials and their encapsulation technologies[J]. Renewable and Sustainable Energy Reviews, 2015, 48: 373−391. doi: 10.1016/j.rser.2015.04.044 |
[38] | WANG Y, SONG Y, LI S, et al. Thermophysical properties of three−dimensional palygorskite based composite phase change materials[J]. Applied Clay Science, 2020, 184: 105367. doi: 10.1016/j.clay.2019.105367 |
[39] | YI H, AI Z, ZHAO Y, et al. Design of 3D−network montmorillonite nanosheet/stearic acid shape−stabilized phase change materials for solar energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 204: 110233. doi: 10.1016/j.solmat.2019.110233 |
[40] | AZIZ A, STOCKER O, EL AMRANI EL HASSANI I E, et al. Effect of blast−furnace slag on physicochemical properties of pozzolan−based geopolymers[J]. Materials Chemistry and Physics, 2021, 258: 123880. doi: 10.1016/j.matchemphys.2020.123880 |
[41] | EDRAKI M, BAUMGARTL T, MANLAPIG E, et al. Designing mine tailings for better environmental, social and economic outcomes: A review of alternative approaches[J]. Journal of Cleaner Production, 2014, 84(1): 411−420. |
[42] | CHEN Y, ZHANG Y, CHEN T, et al. Preparation of eco−friendly construction bricks from hematite tailings[J]. Construction and Building Materials, 2011, 25(4): 2107−2111. doi: 10.1016/j.conbuildmat.2010.11.025 |
[43] | DAS S K, KUMAR S, RAMACHANDRARAO P. Exploitation of iron ore tailing for the development of ceramic tiles[J]. Waste Management, 2000, 20(8): 725−729. doi: 10.1016/S0956-053X(00)00034-9 |
[44] | AHMARI S, ZHANG L. Production of eco−friendly bricks from copper mine tailings through geopolymerization[J]. Construction and Building Materials, 2012, 29: 323−331. doi: 10.1016/j.conbuildmat.2011.10.048 |
[45] | 蒋骞, 潘大伟, 艾天, 等. 铁尾矿与采剥废石基多孔陶瓷复合相变储能材料的制备与表征[J]. 化工矿物与加工, 2023, 52(5): 24−31. JIANG Q, PAN D W, AI T, et al. Reparation and characterization of porous ceramic matrix for composite phase change energy storage materials using iron tailings and mining−stripping waste rock[J]. Industrial Minerals & Processing, 2023, 52(5): 24−31. |
[46] | LI R, ZHOU Y, DUAN X. A novel composite phase change material with paraffin wax in tailings porous ceramics[J]. Applied Thermal Engineering, 2019, 151: 115−123. doi: 10.1016/j.applthermaleng.2019.01.104 |
[47] | HUANG Y, HU N, YE Y, et al. Preparation and pore−forming mechanism of MgO−Al2O3–CaO−based porous ceramics using phosphorus tailings[J]. Ceramics International, 2022, 48(20): 29882−29891. doi: 10.1016/j.ceramint.2022.06.253 |
[48] | ZHANG J, ZHANG X, WAN Y, et al. Preparation and thermal energy properties of paraffin/halloysite nanotube composite as form−stable phase change material[J]. Solar Energy, 2012, 86(5): 1142−1148. doi: 10.1016/j.solener.2012.01.002 |
[49] | FU W, ZOU T, LIANG X, et al. Thermal properties and thermal conductivity enhancement of composite phase change material using sodium acetate trihydrate–urea/expanded graphite for radiant floor heating system[J]. Applied Thermal Engineering, 2018, 138: 618−626. doi: 10.1016/j.applthermaleng.2018.04.102 |
[50] | LI D, CHENG X, LI Y, et al. Effect of MOF derived hierarchical Co3O4/expanded graphite on thermal performance of stearic acid phase change material[J]. Solar Energy, 2018, 171: 142−149. doi: 10.1016/j.solener.2018.06.062 |
[51] | DONG K, GU X, PENG L, et al. Recent advancements in typical mineral−encapsulated form−stable phase change materials for thermal energy storage[J]. Journal of Energy Storage, 2022, 52: 104931. doi: 10.1016/j.est.2022.104931 |
[52] | LIU S, YANG H. Composite of coal−series kaolinite and capric−lauric acid as form−stable phase−change material[J]. Energy Technology, 2015, 3(1): 77−83. doi: 10.1002/ente.201402125 |
[53] | ZHOU Y, SUN W, LING Z, et al. Hydrophilic modification of expanded graphite to prepare a high−performance composite phase change block containing a hydrate salt[J]. Industrial and Engineering Chemistry Research, 2017, 56(50): 14799−14806. doi: 10.1021/acs.iecr.7b03986 |
[54] | JIANG F, GE Z, LING X, et al. Improved thermophysical properties of shape−stabilized NaNO3 using a modified diatomite−based porous ceramic for solar thermal energy storage[J]. Renewable Energy, 2021, 179: 327−338. doi: 10.1016/j.renene.2021.07.023 |
[55] | REN S, LI J, HUANG K, et al. Effect of composite orders of graphene oxide on thermal properties of Na2HPO4•12H2O/expanded vermiculite composite phase change materials[J]. Journal of Energy Storage, 2021, 41: 102980. doi: 10.1016/j.est.2021.102980 |
[56] | YANG Z, LI J, LUAN X, et al. Effects of acid leaching and organic intercalation on the thermophysical properties of paraffin/expanded vermiculite composite phase change materials[J]. Applied Clay Science, 2020, 196: 105754. doi: 10.1016/j.clay.2020.105754 |
[57] | CHENG J, NIU S, KANG M, et al. The thermal behavior and flame−retardant performance of phase change material microcapsules with modified carbon nanotubes[J]. Energy, 2022, 240: 122821. doi: 10.1016/j.energy.2021.122821 |
[58] | 胡勇, 杨浩坤, 邓君, 等. 高导热低热膨胀Al−20%Si/石墨片复合材料的制备与性能研究[J]. 东莞理工学院学报, 2021, 28(1): 118−122. HU Y, YANG H K, DENG J, et al. Preparation and properties of Al−20% Si/Graphite flake with high thermal conductivity and low thermal expansion[J]. Journal of Dongguan University of Technology, 2021, 28(1): 118−122. |
[59] | PARK S S, KIM N J. Influence of the oxidation treatment and the average particle diameter of graphene for thermal conductivity enhancement[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1911−1915. doi: 10.1016/j.jiec.2013.09.011 |
[60] | LV P, DING M, LIU C, et al. Experimental investigation on thermal properties and thermal performance enhancement of octadecanol/expanded perlite form stable phase change materials for efficient thermal energy storage[J]. Renewable Energy, 2019, 131: 911−922. doi: 10.1016/j.renene.2018.07.102 |
[61] | LU Z, XU B, ZHANG J, et al. Preparation and characterization of expanded perlite/paraffin composite as form−stable phase change material[J]. Solar Energy, 2014, 108: 460−466. doi: 10.1016/j.solener.2014.08.008 |
[62] | WANG H, DENG Y, WU F, et al. Effect of dopamine−modified expanded vermiculite on phase change behavior and heat storage characteristic of polyethylene glycol[J]. Chemical Engineering Journal, 2021, 415: 128992. doi: 10.1016/j.cej.2021.128992 |
[63] | CHIU C W, HUANG T K, WANG Y C, et al. Intercalation strategies in clay/polymer hybrids[J]. Progress in Polymer Science, 2014, 39(3): 443−485. doi: 10.1016/j.progpolymsci.2013.07.002 |
[64] | BABAPOOR A, KARIMI G. Thermal properties measurement and heat storage analysis of paraffinnanoparticles composites phase change material: Comparison and optimization[J]. Applied Thermal Engineering, 2015, 90: 945−951. doi: 10.1016/j.applthermaleng.2015.07.083 |
[65] | ŞAHAN N, FOIS M, PAKSOY H. Improving thermal conductivity phase change materials − A study of paraffin nanomagnetite composites[J]. Solar Energy Materials and Solar Cells, 2015, 137: 61−67. doi: 10.1016/j.solmat.2015.01.027 |
[66] | ZHU Y, SHEN X, BAO D, et al. Nano SiC enhancement in the BN micro structure for high thermal conductivity epoxy composite[J]. Journal of Polymer Research, 2021, 28: 1−10. doi: 10.1007/s10965-020-02155-9 |
[67] | HAN L, ZHANG X, JI J, et al. Research progress on the influence of nano−additives on phase change materials[J]. Journal of Energy Storage, 2022, 55: 105807. doi: 10.1016/j.est.2022.105807 |
[68] | QIAN T, ZHU S, WANG H, et al. Comparative study of carbon nanoparticles and single−walled carbon nanotube for light−heat conversion and thermal conductivity enhancement of the multifunctional PEG/Diatomite composite phase change material[J]. ACS Applied Materials and Interfaces, 2019, 11(33): 29698−29707. doi: 10.1021/acsami.9b04349 |
[69] | XU S, ZHANG X, HUANG Z, et al. Thermal conductivity enhanced polyethylene glycol/expanded perlite shape−stabilized composite phase change materials with Cu powder for thermal energy storage[J]. Materials Research Express, 2018, 5(9): 095503. doi: 10.1088/2053-1591/aad5c0 |
[70] | ZHAN W, ZHAO Y, YUAN Y, et al. Development of 2D−Mt/SA/AgNPs microencapsulation phase change materials for solar energy storage with enhancement of thermal conductivity and latent heat capacity[J]. Solar Energy Materials and Solar Cells, 2019, 201: 110090. doi: 10.1016/j.solmat.2019.110090 |
[71] | DENG Y, LI J, NIAN H, et al. Design and preparation of shape−stabilized composite phase change material with high thermal reliability via encapsulating polyethylene glycol into flower−like TiO2 nanostructure for thermal energy storage[J]. Applied Thermal Engineering, 2017, 114: 328−336. doi: 10.1016/j.applthermaleng.2016.11.082 |
[72] | HASBI S, NORAZMAN N, SAHARUDIN M S. Effects of titanium oxide and graphene as nano−fillers on the thermal conductivity of biobased phase change materials as latent thermal heat storage[J]. Materials Today:Proceedings, 2023, 75: 181−187. doi: 10.1016/j.matpr.2022.11.426 |
[73] | WANG H, LI Y, YIN B, et al. Synthesis of cordierite foam ceramics from kyanite tailings and simulated application effects[J]. Materials Today Communications, 2022, 33: 104510. doi: 10.1016/j.mtcomm.2022.104510 |
[74] | GAO H, LIU H, LIAO L, et al. A novel inorganic thermal insulation material utilizing perlite tailings[J]. Energy and Buildings, 2019, 190: 25−33. doi: 10.1016/j.enbuild.2019.02.031 |
[75] | 王鹏昕. 微纳铁尾矿砂/SiO2气凝胶保温隔热建筑新材料的制备及其参数影响规律[D]. 南昌: 南昌航空大学, 2022. WANG P X. Preparation of new material for micro−nano iron tailing Sand/SiO2 aerogel thermal insulation building and laws of parameter influence[D]. Nanchang: Nanchang Hangkong University, 2022. |
[76] | DU Y, CHEN J, HAN Z, et al. A review on solutions for improving rutting resistance of asphalt pavement and test methods[J]. Construction and Building Materials, 2018, 168: 893−905. doi: 10.1016/j.conbuildmat.2018.02.151 |
[77] | ZHANG D, CHEN M, WU S, et al. Preparation of expanded graphite/polyethylene glycol composite phase change material for thermoregulation of asphalt binder[J]. Construction and Building Materials, 2018, 169: 513−521. doi: 10.1016/j.conbuildmat.2018.02.167 |
[78] | 刘溢. 利用石墨尾矿制备太阳能储热陶瓷的研究[D]. 武汉: 武汉理工大学, 2018. LIU Y. Study of the thermal storage ceramic from graphite tailings[D]. Wuhan: Wuhan University of Technology, 2018. |
[79] | 吴建锋, 葛海鹏, 徐晓虹, 等. 用铁尾矿制备太阳能陶瓷蓄热材料的研究[C]//中国硅酸盐学会陶瓷分会, 山东省淄博市科技局, 山东硅元新型材料有限责任公司, 武汉理工大学硅酸盐建筑材料国家重点实验室, 2015. WU J F, GE H P, XV X H, et al. Study and preparation of ceramic thermal storage material from iron tailings for solar thermal power generation[C]∥Advanced ceramics branch of the chinese ceramic society, Zibo Science and Technology Bureau, Shandong Province, Shandong Guiyuan Advanced Ceramics Co., Ltd, State Key Laboratory of Silicate Building Materials, Wuhan University of Technology, 2015. |
[80] | GUELPA E, VERDA V. Thermal energy storage in district heating and cooling systems: a review[J]. Applied Energy, 2019, 252: 113474. doi: 10.1016/j.apenergy.2019.113474 |
[81] | SUN W, LIANG G, FENG F, et al. Study on sodium acetate trihydrate−expand graphite−carbon nanotubes composite phase change materials with enhanced thermal conductivity for waste heat recovery[J]. Journal of Energy Storage, 2022, 55: 105857. doi: 10.1016/j.est.2022.105857 |
[82] | CHAI Z, CHEN X, FANG M, et al. Fabrication and properties of high−thermal−storage RTO ceramics using bauxite tailings and red mud[J]. Ceramics International, 2023, 49(19): 31342−31350. doi: 10.1016/j.ceramint.2023.07.082 |
Schematic diagram of the preparation process of tailings−based FSPCMs
(a) Pore parameters of expanded vermiculite (EVM), acid−modified EVA (A−EVM) and acid−modified organically intercalated EVA (A−O−EVM) obtained by mercuric pressure method; (b) Static adsorption profiles of PCMs by expanded graphite (EG) and modified expanded graphite (MEG)[57]
Thermal conductivity of PEG (polyethylene glycol), PEG/Dt (polyethylene glycol, diatomaceous earth), PEG/DCP (polyethylene glycol, diatomaceous earth, carbon nanoparticles) and PEG/DCN (polyethylene glycol, diatomaceous earth, single−walled carbon nanotubes) composites[68]
(a) Thermal conductivity of 2D−Mt (two−dimensional montmorillonite), SA and added nano−Ag composite phase change materials[70]; (b) Thermal conductivity of different titanium oxide composite phase change materials[72]