Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 Vol. 44, No. 1
Article Contents

XIE Cunli, TIAN Xiaosong, WANG Feiwang, LIANG Zeyue, YANG Bin, DAI Huixin. Application Research Status of Discrete Element Method in Ore Crushing[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 126-134. doi: 10.13779/j.cnki.issn1001-0076.2024.01.015
Citation: XIE Cunli, TIAN Xiaosong, WANG Feiwang, LIANG Zeyue, YANG Bin, DAI Huixin. Application Research Status of Discrete Element Method in Ore Crushing[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 126-134. doi: 10.13779/j.cnki.issn1001-0076.2024.01.015

Application Research Status of Discrete Element Method in Ore Crushing

  • Discrete Element Method (DEM) is a numerical method of discontinuous media mechanics, which has been widely used in the study of mineral processing and crushing process, and is used to analyze and solve the motion law, collision and crushing characteristics of particles in the discrete system. It provides an important theoretical research method for studying the crushing mechanism of minerals and optimizing the working parameters and mechanical structure of crushing equipment. This paper introduces two kinds of simulation models for simulating mineral particle breakage in discrete element numerical simulation technology: Bonded Particle Model (BPM) and Particle Replacement Model (PRM), and the basic principle, model defects, optimization progress and application of the two models are summarized. The research progress of cone crusher, jaw crusher, impact crusher and impact crusher under the influence of different mineral properties, structures and working parameters is reviewed. The advantages and limitations of DEM in ore crushing are discussed, and the development direction of mineral crushing research based on DEM is put forward.

  • 加载中
  • [1] 肖庆飞, 康怀斌, 肖珲, 等. 碎磨技术的研究进展及其应用[J]. 铜业工程, 2016(1): 15−27. doi: 10.3969/j.issn.1009-3842.2016.01.005

    CrossRef Google Scholar

    XIAO Q F, KANG H B, XIAO H, et al. Research progress and application of grinding technology[J]. Copper Engineering, 2016(1): 15−27. doi: 10.3969/j.issn.1009-3842.2016.01.005

    CrossRef Google Scholar

    [2] LIU G Y, XU W J, GOVENDER N, et al. A cohesive fracture model for discrete element method based on polyhedral blocks[J]. Powder Technology, 2020, 359: 190−204. doi: 10.1016/j.powtec.2019.09.068

    CrossRef Google Scholar

    [3] NAKATA A F L, HYDE M, HYODO H, et al. A probabilistic approach to sand particle crushing in the triaxial test[J]. Géotechnique, 1999, 49(5): 567−583.

    Google Scholar

    [4] WEERASEKARA N S, POWELL M S, CLEARY P W, et al. The contribution of DEM to the science of comminution[J]. Powder Technology, 2013, 248: 3−24. doi: 10.1016/j.powtec.2013.05.032

    CrossRef Google Scholar

    [5] SINNOTT M D, CLEARY P W. Simulation of particle flows and breakage in crushers using DEM: Part 2 – impact crushers[J]. Minerals Engineering, 2015, 74: 163−177. doi: 10.1016/j.mineng.2014.11.017

    CrossRef Google Scholar

    [6] QUIST J, EVERTSSON C M. Cone crusher modelling and simulation using DEM[J]. Minerals Engineering, 2016, 85: 92−105. doi: 10.1016/j.mineng.2015.11.004

    CrossRef Google Scholar

    [7] POTYONDY D O, CUNDALL P A. A bonded−particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329−1364. doi: 10.1016/j.ijrmms.2004.09.011

    CrossRef Google Scholar

    [8] ZHAO Z. Gouge particle evolution in a rock fracture undergoing shear: a microscopic DEM study[J]. Rock Mechanics and Rock Engineering, 2013, 46(6): 1461−1479. doi: 10.1007/s00603-013-0373-z

    CrossRef Google Scholar

    [9] KD Kafui, C Thornton. Numerical simulations of impact breakage of a spherical crystalline agglomerate[EB/OL]. [2023−08−02].DOI: 10.1016/S0032-5910(99)00231-4.

    Google Scholar

    [10] KAZERANI T, ZHAO J. Micromechanical parameters in bonded particle method for modelling of brittle material failure[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(18): 1877−1895. doi: 10.1002/nag.884

    CrossRef Google Scholar

    [11] LI X F, LI H B, ZHAO J. 3D polycrystalline discrete element method (3PDEM) for simulation of crack initiation and propagation in granular rock[J]. Computers and Geotechnics, 2017, 90: 96−112. doi: 10.1016/j.compgeo.2017.05.023

    CrossRef Google Scholar

    [12] CHO N, MARTIN C D, SEGO D C. A clumped particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(7): 997−1010. doi: 10.1016/j.ijrmms.2007.02.002

    CrossRef Google Scholar

    [13] TSOUNGUI O, VALLET D, CHARMET J C. Numerical model of crushing of grains inside two−dimensional granular materials[J]. Powder Technology, 1999, 105(1/2/3): 190−198. doi: 10.1016/S0032-5910(99)00137-0

    CrossRef Google Scholar

    [14] LOBO−GUERRERO S, VALLEJO L E. Discrete element method analysis of railtrack ballast degradation during cyclic loading[J]. Granular Matter, 2006, 8(3/4): 195−204. doi: 10.1007/s10035-006-0006-2

    CrossRef Google Scholar

    [15] LOBO−GUERRERO S, VALLEJO L E. Crushing a weak granular material: experimental numerical analyses[J]. Géotechnique, 2005, 55(3): 245−249.

    Google Scholar

    [16] LOBO−GUERRERO S, VALLEJO L E. DEM analysis of crushing around driven piles in granular materials[J]. Géotechnique, 2005, 55(8): 617−623.

    Google Scholar

    [17] LOBO−GUERRERO S, VALLEJO L E, VESGA L F. Visualization of crushing evolution in granular materials under compression using DEM[J]. International Journal of Geomechanics, 2006, 6(3): 195−200. doi: 10.1061/(ASCE)1532-3641(2006)6:3(195)

    CrossRef Google Scholar

    [18] 杨贵, 许建宝, 刘昆林. 粗粒料颗粒破碎数值模拟研究[J]. 岩土力学, 2015, 36(11): 3301−3306.

    Google Scholar

    YANG G, XU J B, LIU K L. Numerical simulation of particle breakage of coarse particles[J]. Rock and Soil Mechanics, 2015, 36(11): 3301−3306.

    Google Scholar

    [19] ALAEI E, MAHBOUBI A. A discrete model for simulating shear strength and deformation behaviour of rockfill material, considering the particle breakage phenomenon[J]. Granular Matter, 2012, 14(6): 707−717. doi: 10.1007/s10035-012-0367-7

    CrossRef Google Scholar

    [20] LIU S, WANG Y, SHEN C. DEM analysis of granular crushing during simple shearing[J]. Marine Georesources & Geotechnology, 2018, 36(5): 522−531.

    Google Scholar

    [21] åSTRöM J A, HERRMANN H J. Fragmentation of grains in a two−dimensional packing[J]. The European Physical Journal B, 1998, 5(3): 551−554. doi: 10.1007/s100510050476

    CrossRef Google Scholar

    [22] HANLEY K J, O’SULLIVAN C, HUANG X. Particle−scale mechanics of sand crushing in compression and shearing using DEM[J]. Soils and Foundations, 2015, 55(5): 1100−1112. doi: 10.1016/j.sandf.2015.09.011

    CrossRef Google Scholar

    [23] WANG P, KARATZA Z, ARSON C. DEM modelling of sequential fragmentation of zeolite granules under oedometric compression based on XCT observations[J]. Powder Technology, 2019, 347: 66−75. doi: 10.1016/j.powtec.2019.02.050

    CrossRef Google Scholar

    [24] DELANEY G W, CLEARY P W, SINNOTT M D, 等. Novel application of DEM to modelling comminution processes[J]. IOP Conference Series: Materials Science and Engineering, 2010, 10: 012099.

    Google Scholar

    DELANEY G W, CLEARY P W, SINNOTT M D, et al. Novel application of DEM to modelling comminution processes[J]. IOP Conference Series: Materials Science and Engineering, 2010, 10: 012099.

    Google Scholar

    [25] DE ARRUDA TINO A A, TAVARES L M. Simulating breakage tests using the discrete element method with polyhedral particles[J]. Computational Particle Mechanics, 2022, 9(4): 811−823. doi: 10.1007/s40571-021-00448-4

    CrossRef Google Scholar

    [26] TAVARES L M, DAS CHAGAS A S. A stochastic particle replacement strategy for simulating breakage in DEM[J]. Powder Technology, 2021, 377: 222−232. doi: 10.1016/j.powtec.2020.08.091

    CrossRef Google Scholar

    [27] REFAHI A, REZAI B, AGHAZADEH MOHANDESI J. Use of rock mechanical properties to predict the Bond crushing index[J]. Minerals Engineering, 2007, 20(7): 662−669. doi: 10.1016/j.mineng.2006.12.015

    CrossRef Google Scholar

    [28] CHENG J, REN T, ZHANG Z, et al. A dynamic model of inertia cone crusher using the discrete element method and multi−body dynamics coupling[J]. Minerals, 2020, 10(10): 862. doi: 10.3390/min10100862

    CrossRef Google Scholar

    [29] LICHTER J, LIM K, POTAPOV A, et al. New developments in cone crusher performance optimization[J]. Minerals Engineering, 2009, 22(7/8): 613−617. doi: 10.1016/j.mineng.2009.04.003

    CrossRef Google Scholar

    [30] BELOGLAZOV I. Automation experimental studies of grinding process in jaw crusher using DEM simulation[J]. Journal of Physics: Conference Series, 2018, 1118: 012007. doi: 10.1088/1742-6596/1118/1/012007

    CrossRef Google Scholar

    [31] CLEARY P W, SINNOTT M D. Simulation of particle flows and breakage in crushers using DEM: Part 1−compression crushers[J]. Minerals Engineering, 2015, 74: 178−197. doi: 10.1016/j.mineng.2014.10.021

    CrossRef Google Scholar

    [32] DELANEY G W, CLEARY P W. The packing properties of superellipsoids[J]. EPL (Europhysics Letters), 2010, 89(3): 34002. doi: 10.1209/0295-5075/89/34002

    CrossRef Google Scholar

    [33] DELANEY G W, MORRISON R D, SINNOTT M D, et al. DEM modelling of non−spherical particle breakage and flow in an industrial scale cone crusher[J]. Minerals Engineering, 2015, 74: 112−122. doi: 10.1016/j.mineng.2015.01.013

    CrossRef Google Scholar

    [34] LI H, MCDOWELL G, LOWNDES I. Discrete element modelling of a rock cone crusher[J]. Powder Technology, 2014, 263: 151−158. doi: 10.1016/j.powtec.2014.05.004

    CrossRef Google Scholar

    [35] JOHANSSON M, QUIST J, EVERTSSON M, et al. Cone crusher performance evaluation using DEM simulations and laboratory experiments for model validation[J]. Minerals Engineering, 2017, 103-104: 93−101. doi: 10.1016/j.mineng.2016.09.015

    CrossRef Google Scholar

    [36] CLEARY P W, SINNOTT M D, MORRISON R D, et al. Analysis of cone crusher performance with changes in material properties and operating conditions using DEM[J]. Minerals Engineering, 2017, 100: 49−70. doi: 10.1016/j.mineng.2016.10.005

    CrossRef Google Scholar

    [37] 潘伟桥, 马立峰, 吴凤彪, 等. 圆锥破碎机破能的分析与腔型优化[J]. 机械设计与制造, 2022(6): 48−53.

    Google Scholar

    PAN W Q, MA L F, WU F B, et al. Analysis of breaking energy and cavity profile optimization of cone crusher[J]. Machinery Design & Manufacture, 2022(6): 48−53.

    Google Scholar

    [38] 郭华军, 戴搭银. 基于离散元法的颚式破碎机动颚板磨损分析与研究[J]. 矿业研究与开发, 2020, 40(7): 130−134.

    Google Scholar

    GUO H J, DAI T Y. Wear analysis and research of jaw plate based on discrete element method[J]. Mining Research and Development, 2020, 40(7): 130−134.

    Google Scholar

    [39] 陈瑶, 秦志钰, 容幸福. 基于EDEM的颚式破碎机内物料破碎行为研究[J]. 机械设计与制造, 2017(2): 46−49.

    Google Scholar

    CHEN Y, QIN Z Y, RONG X X. Research on crushing behavior of material in jaw crusher based on EDEM[J]. Machinery Design & Manufacture, 2017(2): 46−49.

    Google Scholar

    [40] 刘钢湘, 姜志宏, 彭杰. 基于多尺度内聚颗粒模型的颚式破碎机破碎过程研究[J]. 冶金管理, 2021(3): 70−71+75.

    Google Scholar

    LIU G X, JIANG Z H, PENG J. Research on crushing process of jaw crusher based on multi−scale cohesive particle model[J]. Metallurgical Management, 2021(3): 70−71+75.

    Google Scholar

    [41] 吴文震, 冯雁明, 丁智勇, 等. 基于RecurDyn和EDEM的颚式破碎机的破碎耦合仿真[J]. 建筑机械, 2022(11): 91−94+97.

    Google Scholar

    WU W Z, FENG Y M, DING Z Y, et al. Crushing coupling simulation of jaw crusher based on recurdyn and EDEM[J]. Construction Machinery, 2022(11): 91−94+97.

    Google Scholar

    [42] CHIMWANI N, BWALYA M M. Milling studies in an impact crusher I: kinetics modelling based on population balance modelling[J]. Minerals, 2021, 11(5): 470. doi: 10.3390/min11050470

    CrossRef Google Scholar

    [43] DUAN D R, WANG S, ZHAO F, et al. Analysis of particle motion in vertical shaft impact crusher rotor[J]. Advanced Materials Research, 2011, 199-200: 54−57. doi: 10.4028/www.scientific.net/AMR.199-200.54

    CrossRef Google Scholar

    [44] 贺占蜀, 余金龙, 陈江义, 等. 基于离散元法的立轴冲击式破碎机的破碎仿真[J]. 郑州大学学报(工学版), 2021, 42(6): 55−60.

    Google Scholar

    HE Z S, YU J L, CHEN J Y, et al. Simulation of vertical shaft impact crusher based on discrete element method[J]. Journal of Zhengzhou University (Engineering and Technology Edition), 2021, 42(6): 55−60.

    Google Scholar

    [45] BWALYA M M, CHIMWANI N. Numerical simulation of a single and double−rotor impact crusher using discrete element method[J]. Minerals, 2022, 12(2): 143. doi: 10.3390/min12020143

    CrossRef Google Scholar

    [46] LUO M, YANG J H, FANG H Y. An investigation on sand production of vertical shaft impact crusher using EDEM[J]. Advanced Materials Research, 2014, 1004/1005: 1226−1230. doi: 10.4028/www.scientific.net/AMR.1004-1005.1226

    CrossRef Google Scholar

    [47] 黄鹏鹏, 胡名亮, 李成. 基于EDEM的反击式破碎机破碎效率仿真分析[J]. 机械设计与制造, 2016(12): 64−68.

    Google Scholar

    HUANG P P, HU M L, LI C. Simulation analysis of crushing efficiency of impact crusher based on EDEM[J]. Machinery Design & Manufacture, 2016(12): 64−68.

    Google Scholar

    [48] 汪建新, 杜志强. 立轴破碎机的改进与仿真分析[J]. 矿业研究与开发, 2019, 39(12): 144−148.

    Google Scholar

    WANG J X, DU Z Q. Improvement and simulation analysis of vertical shaft crusher[J]. Mining Research and Development, 2019, 39(12): 144−148.

    Google Scholar

    [49] LIU C, CHEN Z, ZHANG W, et al. Analysis of vertical roller mill performance with changes in material properties and operating conditions using DEM[J]. Minerals Engineering, 2022, 182: 107573. doi: 10.1016/j.mineng.2022.107573

    CrossRef Google Scholar

    [50] ZHANG C, ZOU Y, GOU D, et al. Experimental and numerical investigation of particle size and particle strength reduction in high pressure grinding rolls[J]. Powder Technology, 2022, 410: 117892. doi: 10.1016/j.powtec.2022.117892

    CrossRef Google Scholar

    [51] NAGATA Y, TSUNAZAWA Y, TSUKADA K, et al. Effect of the roll stud diameter on the capacity of a high−pressure grinding roll using the discrete element method[J]. Minerals Engineering, 2020, 154: 106412. doi: 10.1016/j.mineng.2020.106412

    CrossRef Google Scholar

    [52] LI Y W, ZHAO L L, HU E Y, et al. Laboratory−scale validation of a DEM model of a toothed double−roll crusher and numerical studies[J]. Powder Technology, 2019, 356: 60−72. doi: 10.1016/j.powtec.2019.08.010

    CrossRef Google Scholar

    [53] 张瑞新, 刘煜, 郑群飞, 等. 基于EDEM的双齿辊破碎机破碎效率影响因素仿真分析[J]. 金属矿山, 2018(2): 154−159.

    Google Scholar

    ZHANG R X, LIU Y, ZHENG Q F, et al. Simulation analysis of influencing factors of crushing efficiency of double−tooth roll crusher based on EDEM[J]. Metal Mine, 2018(2): 154−159.

    Google Scholar

    [54] 尹新伟, 胡月龙, 杨学鹏, 等. 双齿辊破碎机的破碎力离散元模拟研究[J]. 煤炭科学技术, 2020, 48(6): 154−161.

    Google Scholar

    YIN X W, HU Y L, YANG X P, et al. Research on discrete element simulation of crushing force of double−toothed roll crusher[J]. Coal Science and Technology, 2020, 48(6): 154−161.

    Google Scholar

    [55] SUN K, MA R, LI G, et al. The influence of the structure of double toothed roller crusher on the crushing effect based on EDEM[J]. IOP Conference Series: Materials Science and Engineering, 2018, 423: 012152. doi: 10.1088/1757-899X/423/1/012152

    CrossRef Google Scholar

    [56] 毕秋实, 王国强, 黄婷婷, 等. 基于DEM−FEM耦合的双齿辊破碎机辊齿强度分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1770−1776.

    Google Scholar

    BI Q S, WANG G Q, HUANG T T, et al. Strength analysis of double−tooth roll crusher based on DEM and FEM coupling[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(6): 1770−1776.

    Google Scholar

    [57] LU Y, MA R, LI G, et al. Reliability optimization design of bevel gear drive system based on large−scale double−toothed roll crusher[J]. IOP Conference Series:Materials Science and Engineering, 2018, 423: 012157. doi: 10.1088/1757-899X/423/1/012157

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(338) PDF downloads(214) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint