Citation: | YUAN Xinyu, XU Hongtu, SU Fengbo, LI Min, WANG Guobin, REN Yingdong, JIN Saizhen, ZHOU Qiang, LIU Xiangyang. Media Ratio of Cylpeb in Zinc Regrinding Operation of Chifeng NFC Baiyinnuoer Mining Co.ltd. Based on Precise Make-up Ball Technology[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 99-106. doi: 10.13779/j.cnki.issn1001-0076.2023.05.011 |
To solve the problems such as uneven particle size distribution, low content of qualified particle size, high content of over-ground product in zinc regrinding stage, and low zinc recovery and so on, in second dressing plant of Chifeng NFC Baiyinnuoer Mining Co.Ltd. , the scheme of replacing steel ball with cylpeb in this operation was derived on the basis of studying the properties of feed, the semi-theoretical formula of ball diameter and the principle of accurate make-up ball, and the laboratory tests and industrial tests were carried out. The results showed that the average density, the average poisson ratio, the average elastic modulus and the average uniaxial compressive strength of ore were 3.51 g/cm3, 0.30, 15.30×104 MPa, and 138.2 MPa, respectively. Meanwhile, cylpeb media as m (30×40)∶m (20×30)=50∶50 as the initial loading scheme of zinc regrinding mill according to the results deduced and the principle with the same mass was utilized. The results of the industrial tests showed that the -0.038 mm fraction yield of the overflow product was increased by 8.57 percent compared with the previous scheme and the overgrinding fraction yield was decreased by 2.01 percent, effectively reducing the phenomenon of overgrinding. In addition, the average recovery of zinc concentrate during the stable production period was 93.40% with a 1.46 percent higher than the previous scheme, and 508.08 tons of zinc metal would be expected to recover each year, generating 10.1616 million RMB for the beneficiation plant.
[1] | 任英东, 肖庆飞, 周强, 等. 某铅锌矿立磨机与球磨机磨矿效果对比试验研究[J]. 矿产保护与利用, 2023, 43(1): 73−78. REN Y D, XIAO X F, ZHOU Q, et al. Comparative Experimental study on the grinding effect of a lead−zinc mine through vertical mill and ball mill[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 73−78. |
[2] | YAO W, LI M L, ZHANG M, et al. Effects of grinding media on flotation performance of calcite[J]. Minerals Engineering, 2019, 132: 92−94. doi: 10.1016/j.mineng.2018.12.005 |
[3] | 段希祥. 碎矿与磨矿[M]. 北京: 冶金工业出版社, 2012: 2−5. DUAN X X. Crushing and grinding ore[M]. Beijing: Metallurgical Industry Press, 2012: 2−5. |
[4] | 徐秉权. 粉碎新工艺新设备与节能技术[M]. 长沙: 中南工业大学出版社, 1992: 1−4. Xu B Q. New crushing process, new equipment and energy−saving technology[M]. Changsha: Central South University of Technology Press, 1992: 1−4. |
[5] | 谢恒星, 李松仁, 张一清, 等. 磨矿条件对钢球磨损的影响[J]. 武汉化工学院学报, 2000, 22(1): 34−36+49. XIE H X. LI S R, ZHANG Y Q, et al. Effects of grinding conditions on the wear of steel balls[J]. Journal of Wuhan Institute of Chemical Technology, 2000, 22(1): 34−36+49. |
[6] | 杨小生,陈荩.选矿流变学及其应用: 2版[M].长沙:中南工业大学出版社,1995:183. YANG X H, CHEN J. Rheology of mineral processing and its application: 2nd ed[M]. Changsha: Central South University Press, 1995: 183. |
[7] | 肖庆飞. 选择性磨矿的进展及应用[C]∥中国矿业科技大会论文集. 中国冶金矿山企业协会, 2010: 617−622. XIAO Q F. Progress and application of selective grinding[C]∥ China's Mining Technology Conference Proceedings. China Metallurgical Mining Enterprises Association. 2010: 617−622. |
[8] | FUERSTENAU D W, 王文潜. 选矿领域的创新和面临的挑战[J]. 国外金属矿选矿, 1990(3): 35−39+56. FUERSTENAU D W, W ANG W Q. Challenges in mineral processing[J]. Metallic Ore Dressing A broad, 1990(3): 35−39+56. |
[9] | 罗春梅, 肖庆飞, 段希祥. 氧硫混合铅锌矿的选择性磨矿研究与实践[J]. 矿产综合利用, 2013(3): 26−30. doi: 10.3969/j.issn.1000-6532.2013.03.006 LUO C M, XIAO Q F, DUAN X X. Research and practice of selective grinding of oxide−sulphide mixed lead−zinc ore[J]. Multipurpose Utilization of Mineral Resources, 2013(3): 26−30. doi: 10.3969/j.issn.1000-6532.2013.03.006 |
[10] | 杨琳琳, 文书明, 程坤. 磨矿过程中矿物的解离行为分析及提高单体解离度的方法[J]. 矿冶, 2006(2): 13−16. doi: 10.3969/j.issn.1005-7854.2006.02.004 YANG L L, WEN S M, CHENG K. Analysis of dissociation behavior of minerals during grinding process and method to improve the degree of dissociation of monomers[J]. Mining and Metallurgy, 2006(2): 13−16. doi: 10.3969/j.issn.1005-7854.2006.02.004 |
[11] | 段希祥. 选择性磨碎及其在选矿上的意义[J]. 金属矿山, 1986(4): 28−33. DUAN X X. Selective grinding and its significance in beneficiation[J]. Metal Mine, 1986(4): 28−33. |
[12] | 段希祥, 周平, 潘新潮. 球磨机精确化装补球方法[J]. 有色金属, 2004(3): 75−78. DUAN X X, ZHOU P, PAN X C. The ball mill precisely dispenses the ball filling method[J]. Nonferrous Metals, 2004(3): 75−78. |
[13] | 段希祥. 球磨机钢球尺寸的理论计算研究[J]. 昆明工学院学报, 1989(4): 21−29. DUAN X X. Theoretical calculation of ball size of ball mill[J]. Journal of Kunming Institute of Technology, 1989(4): 21−29. |
[14] | 段希祥. 改进云南铜选厂第二段磨磨矿介质的研究[J]. 云南冶金, 1992(6): 23−28. DUAN X X. Study on improving the grinding medium of the second section of Yunnan copper dressing plant[J]. Yunnan Metallurgy, 1992(6): 23−28. |
[15] | 吴彩斌. 破碎统计力学原理及转移概率在装补球制度中的应用研究[D]. 昆明: 昆明理工大学, 2002. WU C B. Application study about crushing statisticmechanics principle and transition probability on load−addition ball system[D]. Kunming: Kunming University of Science and Technology, 2002. |
[16] | 吴彩斌. 破碎统计力学原理及转移概率在装补球制度中的应用研究[M]. 北京: 冶金工业出版社, 2017. Wu C B. Application Study About crushing statisticmechanics principle and transition probability on load−addition ball system[M]. Beijing: Metallurgical Industry Press, 2017. |
[17] | 肖庆飞. 两段磨矿精确化装补球方法的开发及应用研究[D]. 昆明: 昆明理工大学, 2008. XIAO Q F. Development and application of precision chemical filling method for two−stage grinding[D]. Kunming: Kunming University of Science and Technology, 2008. |
[18] | 王国彬, 蓝卓越, 肖庆飞, 等. 选择性磨矿的主要影响因素浅析[J]. 有色金属(选矿部分), 2021(4): 59−66+103. WANG G B, LAN Z Y, XIAO Q F, et al. Analysis of the main influencing factors of selective grinding[J]. Nonferrous Metals(Beneficiation Part), 2021(4): 59−66+103. |
[19] | 肖庆飞, 罗春梅, 石贵明, 等. 狮子山铜矿选矿增产节能降耗应用实践[J]. 矿业研究与开发, 2009, 29(5): 57−58+62. XIAO Q F, LUO C M, SHI G M, et al. Application practice of energy saving and consumption reduction in beneficiation of Lion Rock copper ore[J]. Mining Research and Development, 2009, 29(5): 57−58+62. |
[20] | 雷小莉, 李金泉, 徐忠敏, 等. 精确化装补球技术在金翅岭金矿选矿厂的应用[J]. 黄金科学技术, 2015, 23(6): 87−91. doi: 10.11872/j.issn.1005-2518.2015.06.087 LEI X L, LI J Q, XU Z M, et al. Application of precision masquerading ball filling technology in Goldfin Ridge gold mine concentrator plant[J]. Gold Science and Technology, 2015, 23(6): 87−91. doi: 10.11872/j.issn.1005-2518.2015.06.087 |
[21] | 任英东, 肖庆飞, 石贵明, 等. 安徽白象山铁选厂一段球磨优化及离散元仿真模拟分析[J]. 矿产保护与利用, 2022, 42(2): 131−138. REN Y D, XIAO Q F, SHI G M, et al. Optimization of ball milling and discrete element simulation analysis of one section of Anhui Baixiangshan iron dressing plant[J]. Mineral Protection and Utilization, 2022, 42(2): 131−138. |
Flowsheet of Pb−Zn froth flotation on site
Main mechanical properties of test samples, a) density and Poisson's ratio, b) modulus of elasticity and uniaxial compressive strength
Negative cumulative yield curve of each product in zinc regrinding classification system
Ore particle distribution state inside the mill, a) recommended, b)on site)
Comparable results of media ratios tests in zinc regrinding stage