Citation: | TIAN Pengcheng, WANG Zehong, MAO Yong. Study on the Effect of Inorganic/organic Grinding Aids on the Kinetic Model Parameters of Quartz Grinding[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 112-119. doi: 10.13779/j.cnki.issn1001-0076.2023.03.013 |
Quartz was used as the feed material of the mill, and six grinding aids (inorganic grinding aids: sodium pyrophosphate, aluminum sulfate, and sodium tripolyphosphate; organic grinding aids: glycerol, citric acid, and potassium ethylxanthate) were added to conduct a wet grinding test. The m-order grinding kinetic model of quartz grinding before and after the addition of grinding aids was established, and the effects of grinding aids on the model parameters and grinding rate were systematically analyzed. It was shown that after 10 min grinding, the amount of 0.5% sodium tripolyphosphate increased the −0.074 mm content of the grinding products by 7.44 percentage points and the amount of 0.5% citric acid increased the −0.074 mm content of the grinding products by 7.00 percentage points. The grinding aids changed the values of model parameters k and m. The overall grinding effect depended on the combined effect of k and m. The increment of −1+0.45 mm quartz with sodium tripolyphosphate grinding rate is the largest, and the increment of −0.45+0.18 mm with citric acid grinding rate is the largest.
[1] | 韩跃新. 磨矿原理[M]. 北京: 冶金工业出版社, 2022: 120−131. HAN Y X. The principle of grinding[M]. Beijing: Metallurgical Industey Press, 2022: 120−131. |
[2] | NOMURA S. Analysis of the ball mill grindability to improve the simplified grinding model[J]. Powder Technology, 2022, 405: 117551. doi: 10.1016/j.powtec.2022.117551 |
[3] | 田鹏程, 王泽红, 毛勇. 磨矿动力学研究现状及应用[J]. 中国矿业, 2022, 31(7): 112−121. TIAN P C, WANG Z H, M Y. Research status and application of grinding kinetics[J]. China Mining Magazine, 2022, 31(7): 112−121. |
[4] | NICOLETTA A M, ANGELA B, MARCELLO F, et al. Modeling grinding kinetics of fat based anhydrous pastes[J]. Journal of Food Engineering, 2020, 268(C). |
[5] | LEE H, KIM K, LEE H. Analysis of grinding kinetics in a laboratory ball mill using population-balance-model and discrete-element-method[J]. Advanced Powder Technology, 2019, 30(11): 2517−2526. doi: 10.1016/j.apt.2019.07.030 |
[6] | AUSTIN L G, LUCKIE P T. Methods for determination of breakage distribution parameters[J]. Powder Technology, 1972, 5(4): 215−222. doi: 10.1016/0032-5910(72)80022-6 |
[7] | CAYIRLI S. Analysis of grinding aid performance effects on dry fine milling of calcite[J]. Advanced Powder Technology, 2022, 33(3): 103446. doi: 10.1016/j.apt.2022.103446 |
[8] | BOZKURT V, OZGUR I. Dry grinding kinetics of colemanite[J]. Powder Technology, 2007, 176(2/3): 88−92. |
[9] | NURETTIN A T, OKAY A, AHMET H B. The effects of grinding aids on modelling of air classification of cement[J]. Construction and Building Materials, 2018, 160. |
[10] | 侯英, 印万忠, 朱巨建, 等. 不同碎磨方式下紫金山金铜矿石的磨矿动力学行为[J]. 中南大学学报(自然科学版), 2017, 48(5): 1127−1133. HOU Y, YIN W Z, ZHU J J, et al. Grinding kinetic behaviors of Au-Cu ore from Zijinshan by different comminuting processes[J]. Journal of Central South University (Science and Technology), 2017, 48(5): 1127−1133. |
[11] | 周意超, 赵汝全, 吴彩斌, 等. 磨矿浓度对磨矿产品粒度组成特性的影响[J]. 有色金属科学与工程, 2016, 7(5): 93−97. ZHOU Y C, ZHAO R Q, WU C B, et al. Effect of grinding concentration on product size distribution characteristics[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 93−97. |
[12] | HASEGAWA M, KIMATA M, SHIMANE M, et al. The effect of liquid additives on dry ultrafine grinding of quartz[J]. Powder Technology, 2001, 114(1): 145−151. |
[13] | 王力, 张常法, 张军, 等. 助磨剂对煤沥青磨矿动力学的影响[J]. 山东科技大学学报(自然科学版), 2008(5): 23−26. WANG L, ZHANG C F, ZHANG J, et al. The effects of grinding agents on the grinding kinetics of coal tar pitch[J]. Journal of Shandong University of Science and Technology(Natural Science), 2008(5): 23−26. |
[14] | 黄勇, 史才军, 王小刚, 等. TEA和TIPA对水泥粉磨动力学的影响[J]. 硅酸盐通报, 2013, 32(10): 2114−2120. HUANG Y, SHI C J, WANG X G, et al. Effect of TEA and TIPA on the grinding kinetics of cement[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(10): 2114−2120. |
[15] | CHOI H, LEE W, KIM S. Effect of grinding aids on the kinetics of fine grinding energy consumed of calcite powders by a stirred ball mill[J]. Advanced Powder Technology, 2009, 20(4): 350−354. doi: 10.1016/j.apt.2009.01.002 |
[16] | 谢冬冬, 侯英, 盖壮, 等. 助磨剂对氧化铁矿石磨矿动力学行为的影响[J]. 中南大学学报(自然科学版), 2020, 51(2): 279−286. XIE D D, HOU Y, GAI Z, et al. Influence of grinding aids on grinding kinetics of oxidized iron ore[J]. Journal of Central South University(Science and Technology), 2020, 51(2): 279−286. |
[17] | L. G A. A discussion of equations for the analysis of batch grinding data[J]. Powder Technology, 1999, 106(1): 71−77. |
[18] | 段希祥. 碎矿与磨矿[M]. 北京: 冶金工业出版社, 2012: 197−199. DUAN X X. Crushing and grinding[M]. Beijing: Metallurgical Industry Press, 2012: 197−199. |
[19] | 侯英, 丁亚卓, 印万忠, 等. 磨矿动力学参数对磨矿速度的影响[J]. 东北大学学报(自然科学版), 2013, 34(5): 708−711. doi: 10.12068/j.issn.1005-3026.2013.05.023 HOU Y, DING Y Z, YIN W Z, et al. Influence of grinding kinetics parameters on grinding speed[J]. Journal of Northeastern University(Natural Science), 2013, 34(5): 708−711. doi: 10.12068/j.issn.1005-3026.2013.05.023 |
[20] | 张志鹏, 周强, 肖庆飞, 等. 基于磨矿动力学某铜矿磨矿介质配比优化试验研究[J]. 矿产保护与利用, 2023, 43(1): 66−72. doi: 10.13779/j.cnki.issn1001-0076.2022.01.042 ZHANG Z P, ZHOU Q, XIAO Q F, et al. Experimental study on optimization of grinding medium ratio of some copper mine based on grinding kinetics[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 66−72. doi: 10.13779/j.cnki.issn1001-0076.2022.01.042 |
[21] | GUPTA V K. Effect of particulate environment on the grinding kinetics of mixtures of minerals in ball mills[J]. Powder Technology, 2020, 375: 549−558. doi: 10.1016/j.powtec.2020.07.072 |
The X-ray spectra of quartz
Particle size characteristic curves of raw materials
Ln[ln(R0/Rt)] of different grain sizes and lnt
Relationship between grinding speed and grinding time with different size
Effects of grinding aid dosage on −0.074 mm content in grinding products
Effects of grinding aids on parameters k and m of m-order grinding kinetic model of quartz grinding
The relationship between the yield of +0.074 mm particle size and grinding time
Effects of grinding aids on grinding rate of −1+0.45 mm and −0.45+0.18 mm particle size