Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 3
Article Contents

TIAN Pengcheng, WANG Zehong, MAO Yong. Study on the Effect of Inorganic/organic Grinding Aids on the Kinetic Model Parameters of Quartz Grinding[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 112-119. doi: 10.13779/j.cnki.issn1001-0076.2023.03.013
Citation: TIAN Pengcheng, WANG Zehong, MAO Yong. Study on the Effect of Inorganic/organic Grinding Aids on the Kinetic Model Parameters of Quartz Grinding[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 112-119. doi: 10.13779/j.cnki.issn1001-0076.2023.03.013

Study on the Effect of Inorganic/organic Grinding Aids on the Kinetic Model Parameters of Quartz Grinding

More Information
  • Quartz was used as the feed material of the mill, and six grinding aids (inorganic grinding aids: sodium pyrophosphate, aluminum sulfate, and sodium tripolyphosphate; organic grinding aids: glycerol, citric acid, and potassium ethylxanthate) were added to conduct a wet grinding test. The m-order grinding kinetic model of quartz grinding before and after the addition of grinding aids was established, and the effects of grinding aids on the model parameters and grinding rate were systematically analyzed. It was shown that after 10 min grinding, the amount of 0.5% sodium tripolyphosphate increased the −0.074 mm content of the grinding products by 7.44 percentage points and the amount of 0.5% citric acid increased the −0.074 mm content of the grinding products by 7.00 percentage points. The grinding aids changed the values of model parameters k and m. The overall grinding effect depended on the combined effect of k and m. The increment of −1+0.45 mm quartz with sodium tripolyphosphate grinding rate is the largest, and the increment of −0.45+0.18 mm with citric acid grinding rate is the largest.

  • 加载中
  • [1] 韩跃新. 磨矿原理[M]. 北京: 冶金工业出版社, 2022: 120−131.

    Google Scholar

    HAN Y X. The principle of grinding[M]. Beijing: Metallurgical Industey Press, 2022: 120−131.

    Google Scholar

    [2] NOMURA S. Analysis of the ball mill grindability to improve the simplified grinding model[J]. Powder Technology, 2022, 405: 117551. doi: 10.1016/j.powtec.2022.117551

    CrossRef Google Scholar

    [3] 田鹏程, 王泽红, 毛勇. 磨矿动力学研究现状及应用[J]. 中国矿业, 2022, 31(7): 112−121.

    Google Scholar

    TIAN P C, WANG Z H, M Y. Research status and application of grinding kinetics[J]. China Mining Magazine, 2022, 31(7): 112−121.

    Google Scholar

    [4] NICOLETTA A M, ANGELA B, MARCELLO F, et al. Modeling grinding kinetics of fat based anhydrous pastes[J]. Journal of Food Engineering, 2020, 268(C).

    Google Scholar

    [5] LEE H, KIM K, LEE H. Analysis of grinding kinetics in a laboratory ball mill using population-balance-model and discrete-element-method[J]. Advanced Powder Technology, 2019, 30(11): 2517−2526. doi: 10.1016/j.apt.2019.07.030

    CrossRef Google Scholar

    [6] AUSTIN L G, LUCKIE P T. Methods for determination of breakage distribution parameters[J]. Powder Technology, 1972, 5(4): 215−222. doi: 10.1016/0032-5910(72)80022-6

    CrossRef Google Scholar

    [7] CAYIRLI S. Analysis of grinding aid performance effects on dry fine milling of calcite[J]. Advanced Powder Technology, 2022, 33(3): 103446. doi: 10.1016/j.apt.2022.103446

    CrossRef Google Scholar

    [8] BOZKURT V, OZGUR I. Dry grinding kinetics of colemanite[J]. Powder Technology, 2007, 176(2/3): 88−92.

    Google Scholar

    [9] NURETTIN A T, OKAY A, AHMET H B. The effects of grinding aids on modelling of air classification of cement[J]. Construction and Building Materials, 2018, 160.

    Google Scholar

    [10] 侯英, 印万忠, 朱巨建, 等. 不同碎磨方式下紫金山金铜矿石的磨矿动力学行为[J]. 中南大学学报(自然科学版), 2017, 48(5): 1127−1133.

    Google Scholar

    HOU Y, YIN W Z, ZHU J J, et al. Grinding kinetic behaviors of Au-Cu ore from Zijinshan by different comminuting processes[J]. Journal of Central South University (Science and Technology), 2017, 48(5): 1127−1133.

    Google Scholar

    [11] 周意超, 赵汝全, 吴彩斌, 等. 磨矿浓度对磨矿产品粒度组成特性的影响[J]. 有色金属科学与工程, 2016, 7(5): 93−97.

    Google Scholar

    ZHOU Y C, ZHAO R Q, WU C B, et al. Effect of grinding concentration on product size distribution characteristics[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 93−97.

    Google Scholar

    [12] HASEGAWA M, KIMATA M, SHIMANE M, et al. The effect of liquid additives on dry ultrafine grinding of quartz[J]. Powder Technology, 2001, 114(1): 145−151.

    Google Scholar

    [13] 王力, 张常法, 张军, 等. 助磨剂对煤沥青磨矿动力学的影响[J]. 山东科技大学学报(自然科学版), 2008(5): 23−26.

    Google Scholar

    WANG L, ZHANG C F, ZHANG J, et al. The effects of grinding agents on the grinding kinetics of coal tar pitch[J]. Journal of Shandong University of Science and Technology(Natural Science), 2008(5): 23−26.

    Google Scholar

    [14] 黄勇, 史才军, 王小刚, 等. TEA和TIPA对水泥粉磨动力学的影响[J]. 硅酸盐通报, 2013, 32(10): 2114−2120.

    Google Scholar

    HUANG Y, SHI C J, WANG X G, et al. Effect of TEA and TIPA on the grinding kinetics of cement[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(10): 2114−2120.

    Google Scholar

    [15] CHOI H, LEE W, KIM S. Effect of grinding aids on the kinetics of fine grinding energy consumed of calcite powders by a stirred ball mill[J]. Advanced Powder Technology, 2009, 20(4): 350−354. doi: 10.1016/j.apt.2009.01.002

    CrossRef Google Scholar

    [16] 谢冬冬, 侯英, 盖壮, 等. 助磨剂对氧化铁矿石磨矿动力学行为的影响[J]. 中南大学学报(自然科学版), 2020, 51(2): 279−286.

    Google Scholar

    XIE D D, HOU Y, GAI Z, et al. Influence of grinding aids on grinding kinetics of oxidized iron ore[J]. Journal of Central South University(Science and Technology), 2020, 51(2): 279−286.

    Google Scholar

    [17] L. G A. A discussion of equations for the analysis of batch grinding data[J]. Powder Technology, 1999, 106(1): 71−77.

    Google Scholar

    [18] 段希祥. 碎矿与磨矿[M]. 北京: 冶金工业出版社, 2012: 197−199.

    Google Scholar

    DUAN X X. Crushing and grinding[M]. Beijing: Metallurgical Industry Press, 2012: 197−199.

    Google Scholar

    [19] 侯英, 丁亚卓, 印万忠, 等. 磨矿动力学参数对磨矿速度的影响[J]. 东北大学学报(自然科学版), 2013, 34(5): 708−711. doi: 10.12068/j.issn.1005-3026.2013.05.023

    CrossRef Google Scholar

    HOU Y, DING Y Z, YIN W Z, et al. Influence of grinding kinetics parameters on grinding speed[J]. Journal of Northeastern University(Natural Science), 2013, 34(5): 708−711. doi: 10.12068/j.issn.1005-3026.2013.05.023

    CrossRef Google Scholar

    [20] 张志鹏, 周强, 肖庆飞, 等. 基于磨矿动力学某铜矿磨矿介质配比优化试验研究[J]. 矿产保护与利用, 2023, 43(1): 66−72. doi: 10.13779/j.cnki.issn1001-0076.2022.01.042

    CrossRef Google Scholar

    ZHANG Z P, ZHOU Q, XIAO Q F, et al. Experimental study on optimization of grinding medium ratio of some copper mine based on grinding kinetics[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 66−72. doi: 10.13779/j.cnki.issn1001-0076.2022.01.042

    CrossRef Google Scholar

    [21] GUPTA V K. Effect of particulate environment on the grinding kinetics of mixtures of minerals in ball mills[J]. Powder Technology, 2020, 375: 549−558. doi: 10.1016/j.powtec.2020.07.072

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(5)

Article Metrics

Article views(300) PDF downloads(61) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint