Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 2
Article Contents

CHENG Qi, CHEN Wei, LIU Guangyi. Review on Progress of Lepidolite Flotation Collectors and Depressants[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 11-19. doi: 10.13779/j.cnki.issn1001-0076.2023.02.002
Citation: CHENG Qi, CHEN Wei, LIU Guangyi. Review on Progress of Lepidolite Flotation Collectors and Depressants[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 11-19. doi: 10.13779/j.cnki.issn1001-0076.2023.02.002

Review on Progress of Lepidolite Flotation Collectors and Depressants

More Information
  • With the increasing demand for lithium resources in recent years, the flotation research of lepidolite becomes more and more important as it is a key supplementary source of lithium resources. However, lepidolite usually coexists with gangue minerals such as calcite, muscovite, feldspar and quartz, which makes it difficult to separate them. Herein, based on the analysis of the crystal properties of lepidolite, this review highlights recent research progress in flotation collectors and depressants of lepidolite. At present, the main flotation collectors of lepidolite mainly include amine cationic collectors (primary amine, secondary amine, quaternary ammonium salt, ether amine and Gemini), the combination of amine cationic collectors and anionic collectors in a certain proportion. Flotation depressants mainly aim at the Si-containing and Ca-containing gangue minerals, which could be divided into inorganics (water glass, sodium hexametaphosphate and so on), organics (oxalic acid, tannin and lignin) and combined depressants. It is pointed out that the future research focus in the field of lepidolite flotation is mainly on the following three points: (1) the synthesis of novel lepidolite collectors; (2) basic research on the adsorption mechanism of mixed cationic/anionic collectors at the lepidolite/water interface; (3) the combination of the inorganic and organic depressants for the inhibition of calcareous and siliceous gangues and the correlated mechanisms.

  • 加载中
  • [1] 马哲, 李建武. 中国锂资源供应体系研究: 现状、问题与建议[J]. 中国矿业, 2018(10): 1−7.

    Google Scholar

    MA Z, LI J W. Analysis of China’s lithium resources supply system: status, issues and suggestions[J]. China Mining Magazine, 2018(10): 1−7.

    Google Scholar

    [2] 姜贞贞, 刘高令, 卓玛曲西, 等. 我国锂资源供需现状下西藏盐湖锂产业现状及对策建议[J]. 盐湖研究, 2021(3): 104−110.

    Google Scholar

    JIANG Z Z, LIU G L, ZHUO M Q X, et al. Present situation and suggestions of saline lake lithium resource in Tibet under the current situation of supply and demand of lithium resources in China[J]. Journal of Salt Lake Research, 2021(3): 104−110.

    Google Scholar

    [3] SAHOO S K, TRIPATHY S K, NAYAK A, et al. Beneficiation of lithium bearing pegmatite rock: a review[J]. Mineral Processing and Extractive Metallurgy Review, 2022: 1-27.

    Google Scholar

    [4] KORBEL C, FILIPPOVA I V, FILIPPOV L O. Froth flotation of lithium micas-A review[J]. Minerals Engineering, 2023, 192: 107986. doi: 10.1016/j.mineng.2022.107986

    CrossRef Google Scholar

    [5] FILIPPOV L O, FILIPPOVA I V, CRUMIERE G, et al. Separation of lepidolite from hard-rock pegmatite ore via dry processing and flotation[J]. Minerals Engineering, 2022, 187: 107768. doi: 10.1016/j.mineng.2022.107768

    CrossRef Google Scholar

    [6] TADESSE B, MAKUEI F, ALBIJANIC B, et al. The beneficiation of lithium minerals from hard rock ores: A review[J]. Minerals Engineering, 2019, 131: 170−184. doi: 10.1016/j.mineng.2018.11.023

    CrossRef Google Scholar

    [7] 李根, 杨洁, 杨静. 锂云母分解及溶出锂工艺的研究进展评述[J]. 硅酸盐通报, 2017(5): 1599−1604. doi: 10.16552/j.cnki.issn1001-1625.2017.05.024

    CrossRef Google Scholar

    LI G, YANG J, YANG J. Literature review of extracting lithium from lepidolite[J]. Literature Review of Extracting Lithium from Lepidolite, 2017(5): 1599−1604. doi: 10.16552/j.cnki.issn1001-1625.2017.05.024

    CrossRef Google Scholar

    [8] 刘勇, 黄霞光, 陈果. 锂云母浮选药剂研究现状与思考[J]. 中国非金属矿工业导刊, 2015(5): 11−12. doi: 10.3969/j.issn.1007-9386.2015.05.004

    CrossRef Google Scholar

    LIU Y, HUANG X G, CHEN G. Review and status of research on flotation reagents of lepidolite[J]. China Non-metallic Minerals Industry, 2015(5): 11−12. doi: 10.3969/j.issn.1007-9386.2015.05.004

    CrossRef Google Scholar

    [9] BULATOVIC S M. Beneficiation of lithium ores. Handbook of flotation reagents: Chemistry, theory and practice, volume 3: Flotation of industrial minerals[M]. Amsterdam: The Netherland Elsevier, 2014.

    Google Scholar

    [10] 张慧婷. 十二胺和油酸组合捕收剂在锂云母表面吸附的分子动力学模拟[D]. 赣州: 江西理工大学, 2017.

    Google Scholar

    ZHANG H T. Molecular dynamics simulation of adsorption of combined collectors of dodecylamine and oleic acid on surface of lepidolite[D]. Ganzhou: Jiangxi University of Science and Technology, 2017.

    Google Scholar

    [11] BULATOVIC S M. Handbook of flotation reagents: chemistry, theory and practice: 1st ed[M]. Amsterdam: The Netherland Elsevier, 2007.

    Google Scholar

    [12] LOMBE W C. The surface chemistry and flotation of spodumene, lepidolite and associated silicates in the presence of dodecylamine[D]. London: University of London, 1983.

    Google Scholar

    [13] SOUSA R, RAMOS V, GUEDES A, et al. The Alvarrões-Gonçalo Li project: an example of sustainable lithium mining[J]. Adv Geosci, 2018, 45: 1−5. doi: 10.5194/adgeo-45-1-2018

    CrossRef Google Scholar

    [14] 秦伍, 李同其, 王念峰, 等. 提高锂云母精矿品位及回收率的浮选工艺研究[J]. 佛山陶瓷, 2018(8): 27−31. doi: 10.3969/j.issn.1006-8236.2018.08.010

    CrossRef Google Scholar

    QIN W, LI T Q, WANG N F, et al. Study on the flotation process for improving the grade and recovery of lepidolite concentrate[J]. Foshan Ceramics, 2018(8): 27−31. doi: 10.3969/j.issn.1006-8236.2018.08.010

    CrossRef Google Scholar

    [15] LIU Z, SUN Z, YU J G. Investigation of dodecylammonium adsorption on mica, albite and quartz surfaces by QM/MM simulation[J]. Molecular Physics, 2015, 113(22): 3423-3430.

    Google Scholar

    [16] 刘跃龙, 王林林, 刘够生. 十二胺捕收剂在三种不同矿物表面吸附的分子动力学模拟[J]. 有色金属工程, 2020(7): 82−87. doi: 10.3969/j.issn.2095-1744.2020.07.013

    CrossRef Google Scholar

    LIU Y L, WANG L L, LIU G S. Molecular dynamics simulation of adsorption behavior of dodecylamine on three different mineral surfaces[J]. Nonferrous Metals Engineering, 2020(7): 82−87. doi: 10.3969/j.issn.2095-1744.2020.07.013

    CrossRef Google Scholar

    [17] BHAPPU B, FUERSTENAU M C. Recovery of valuable minerals from pegmatite ores[J]. New Mexico Bureau of Mines and Mineral Resources, 1964, 70: 1−29.

    Google Scholar

    [18] 吕子虎, 卫敏, 吴东印, 等. 提高铁锂云母精矿产品质量的试验研究[J]. 中国矿业, 2012(4): 104−110. doi: 10.3969/j.issn.1004-4051.2012.04.024

    CrossRef Google Scholar

    LV Z H, WEI M, WU D Y, et al. Experimental study on improving the quality of zinnwaldit[J]. China Mining Magazine, 2012(4): 104−110. doi: 10.3969/j.issn.1004-4051.2012.04.024

    CrossRef Google Scholar

    [19] 张婷, 李平, 李振飞. 粗长石粉中回收锂云母的试验研究[J]. 矿产综合利用, 2018(4): 50−53. doi: 10.3969/j.issn.1000-6532.2018.04.011

    CrossRef Google Scholar

    ZHANG T, LI P, LI Z F. Experimental research on recovery of lithium mica from coarse feldspar powder[J]. Multipurpose Utilization of Mineral Resources, 2018(4): 50−53. doi: 10.3969/j.issn.1000-6532.2018.04.011

    CrossRef Google Scholar

    [20] 邹耀伟, 张洁, 丁勇. 江西某低品位铁锂云母矿综合回收工艺研究[J]. 有色金属(选矿部分), 2019(5): 85−89.

    Google Scholar

    ZOU Y W, ZHANG J, DING Y. Study on comprehensive recovery of a low grade zinnwaldite ore from Jiangxi[J]. Nonferrous Metals (Mineral Processing Sections), 2019(5): 85−89.

    Google Scholar

    [21] 刘书杰, 王中明, 陈定洲, 等. 某钽铌尾矿锂云母、长石分离试验研究[J]. 有色金属(选矿部分), 2013(supplement): 177−179.

    Google Scholar

    LIU S J, WANG Z M, CHEN D Z, et al. Experimental study on separation of lepidolite and feldspar from tantalum & niobium tailings[J]. Nonferrous Metals (Mineral Processing Sections), 2013(supplement): 177−179.

    Google Scholar

    [22] 焦芬, 覃文庆, 王云帆, 等. 一种锂云母浮选方法: CN201710322482.6[P]. 2017-05-09.

    Google Scholar

    JIAO F, QIN W Q, WANG Y F, et al. A flotation method of lepidolite: CN201710322482.6[P]. 2017-05-09.

    Google Scholar

    [23] CHOI J, KIM W, CHAE W, et al. Electrostatically controlled enrichment of lepidolite via flotation[J]. Materials Transactions, 2012, 53(12): 2191−2194. doi: 10.2320/matertrans.M2012235

    CrossRef Google Scholar

    [24] 秦伍, 李同其. 一种锂云母浮选方法: 201810567144.3[P]. 2018-06-05.

    Google Scholar

    QIN W, LI T Q. A flotation method of lepidolite: 201810567144.3[P]. 2018-06-05.

    Google Scholar

    [25] 龙运波, 朱昌洛, 杨磊. 甘肃某铷多金属矿浮选锂云母选矿试验研究[J]. 矿产综合利用, 2016(4): 74−77. doi: 10.3969/j.issn.1000-6532.2016.04.017

    CrossRef Google Scholar

    LONG Y B, ZHU C L, YANG L. Experimental research on flotation of lithia mica of a rubidiun polymetallic ore in Gansu[J]. Multipurpose Utilization of Mineral Resources, 2016(4): 74−77. doi: 10.3969/j.issn.1000-6532.2016.04.017

    CrossRef Google Scholar

    [26] RUAN Y Y, HE D S, CHI R. Review on beneficiation techniques and reagents used for phosphate ores[J]. Minerals, 2019, 9(4): 253. doi: 10.3390/min9040253

    CrossRef Google Scholar

    [27] HUANG Z Q, SHUAI S Y, WANG H L, et al. Froth flotation separation of lepidolite ore using a new Gemini surfactant as the flotation collector[J]. Separation and Purification Technology, 2022, 282: 119122. doi: 10.1016/j.seppur.2021.119122

    CrossRef Google Scholar

    [28] HUANG Z Q, ZHANG S Y, CHENG C, et al. Recycling lepidolite from tantalum-niobium mine tailings by a combined magnetic-flotation process using a novel Gemini surfactant: from tailings dams to the “Bling” raw material of lithium[J]. ACS Sustainable Chemistry & Engineering, 2020, 8: 18206−18214.

    Google Scholar

    [29] 黄志强, 黄万抚, 邱廷省, 等. 一种用于矿物浮选的三季铵盐类化合物: 201710690974.0[P]. 2017-08-14.

    Google Scholar

    HUANG Z Q, HUANG W F, QIU T S, et al. A tri-quaternary ammonium salt compound used for mineral flotation: 201710690974.0[P]. 2017-08-14.

    Google Scholar

    [30] 黄志强, 邱廷省, 黄万抚, 等. 一种用于矿物浮选的吗啉季铵盐型Gemini表面活性剂: 201710691142.0[P]. 2017-08-14.

    Google Scholar

    HUANG Z Q, QIU T S, HUANG W F, et al. A morpholine quaternary ammonium salt Gemini surfactant used for mineral flotation: 201710691142.0[P]. 2017-08-14.

    Google Scholar

    [31] 黄志强, 何桂春, 邱廷省, 等. 一种新型表面活性剂在锂云母矿浮选上的应用方法: 201910748299.1[P]. 2019-08-14.

    Google Scholar

    HUANG Z Q, HE G C, QIU T S, et al. Application of a novel surfactant in the flotation of lepidolite: 201910748299.1[P]. 2019-08-14.

    Google Scholar

    [32] 黄志强, 邱廷省, 黄万抚, 等. 一种用于矿物浮选的双子星座表面活性剂: 201710691119.1[P]. 2017-08-14.

    Google Scholar

    HUANG Z Q, QIU T S, HUANG W F, et al. A Gemini surfactant used for mineral flotation: 201710691119.1[P]. 2017-08-14.

    Google Scholar

    [33] HUANG Z Q, LI W Y, HE G C, et al. Adsorption mechanism of amidoxime collector on the flotation of lepidolite: experiment and DFT calculation[J]. Langmuir, 2022, 38: 15858−15865. doi: 10.1021/acs.langmuir.2c02821

    CrossRef Google Scholar

    [34] 周贺鹏, 耿亮, 郭亮. 江西宜春低品位锂云母矿综合回收工艺研究[J]. 非金属矿, 2020(4): 59−62. doi: 10.3969/j.issn.1000-8098.2020.04.016

    CrossRef Google Scholar

    ZHOU H P, GENG L, GUO L. Experimental Study on comprehensive recovery of low-grade lepidolite in Yichun, Jiangxi province[J]. Non-Metallic Mines, 2020(4): 59−62. doi: 10.3969/j.issn.1000-8098.2020.04.016

    CrossRef Google Scholar

    [35] VIECELI N, DURãO F O, GUIMARãES C, et al. Kinetic approach to the study of froth flotation applied to a lepidolite ore[J]. International Journal of Minerals, Metallurgy and Materials, 2016, 23: 731−742. doi: 10.1007/s12613-016-1287-z

    CrossRef Google Scholar

    [36] VIECELI N, DURãO F O, GUIMARãES C, et al. Grade-recovery modelling and optimization of the froth flotation process of a lepidolite ore[J]. International Journal of Mineral Processing, 2016, 157: 184−194. doi: 10.1016/j.minpro.2016.11.005

    CrossRef Google Scholar

    [37] 李利娟, 张凡. 某钽铌重选尾矿中的锂云母浮选试验研究[J]. 矿业研究与开发, 2013(2): 57−60.

    Google Scholar

    LI L J, ZHANG F. Experimental research on recovery of lithium mica from a Ta-Nb gravity tailing by flotation[J]. Mining Research and Development, 2013(2): 57−60.

    Google Scholar

    [38] 吕子虎, 赵登魁, 沙惠雨, 等. 阴阳离子组合捕收剂浮选锂云母的试验研究[J]. 矿产保护与利用, 2017(2): 81−84.

    Google Scholar

    LV Z H, ZHAO D K, SHA H Y, et al. Experimental study on lepidolite flotation with anion-cation combined collectors[J]. Conservation and Utilization of Mineral Resources, 2017(2): 81−84.

    Google Scholar

    [39] 王林林, 朱灵燕, 刘跃龙, 等. 阴阳离子混合捕收剂用于中低品位锂云母的浮选试验研究[J]. 有色金属(选矿部分), 2019(3): 86−92.

    Google Scholar

    WANG L L, ZHU L Y, LIU Y L, et al. Flotation of low grade lepidolite using mixed cationic/anionic collector[J]. Nonferrous Metals (Mineral Processing Sections), 2019(3): 86−92.

    Google Scholar

    [40] 徐启云. 某含钽铌锂云母多金属矿选矿工艺研究[J]. 湖南有色金属, 2022(1): 8−11. doi: 10.3969/j.issn.1003-5540.2022.01.003

    CrossRef Google Scholar

    XU Q Y. Study on Beneficiation technology of a tantalum-niobium lithium-mica polymetallic ore[J]. Hunan Nonferrous Metals, 2022(1): 8−11. doi: 10.3969/j.issn.1003-5540.2022.01.003

    CrossRef Google Scholar

    [41] BAI Y, CUI W S, GAO Y J, et al. Synergistic mechanism of mixed cationic/anionic collectors on lepidolite flotation from the perspective of improving the performance of flotation foam[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 656: 130354. doi: 10.1016/j.colsurfa.2022.130354

    CrossRef Google Scholar

    [42] 何桂春, 冯金妮, 毛美心, 等. 组合捕收剂在锂云母浮选中的应用研究[J]. 非金属矿, 2013(4): 29−31. doi: 10.3969/j.issn.1000-8098.2013.04.010

    CrossRef Google Scholar

    HE G C, FENG J N, MAO M X, et al. Application of combined collectors in flotation of lepidolite[J]. Non-Metallic Mines, 2013(4): 29−31. doi: 10.3969/j.issn.1000-8098.2013.04.010

    CrossRef Google Scholar

    [43] 冯金妮. 锂云母高效捕收剂的选择及机理研究[D]. 赣州: 江西理工大学, 2013.

    Google Scholar

    FENG J N. Study on the selection and mechanism of high-efficient Lepidolite collector[D]. Ganzhou: Jiangxi University of Science and Technology, 2013.

    Google Scholar

    [44] WEI Q, FENG L Q, DONG L Y, et al. Selective co-adsorption mechanism of a new mixed collector on the flotation separation of lepidolite from quartz[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 612: 125973. doi: 10.1016/j.colsurfa.2020.125973

    CrossRef Google Scholar

    [45] 焦芬, 覃文庆, 魏茜. 一种锂云母浮选捕收剂及其应用: 202111477002.6[P]. 2021-12-06.

    Google Scholar

    JIAO F, QIN W Q, WEI Q. A lepidolite flotation collector and its application: 202111477002.6[P]. 2021-12-06.

    Google Scholar

    [46] 凌石生, 尚衍波, 肖巧斌, 等. 一种锂云母的选矿方法: 202210672590.7[P]. 2022-06-14.

    Google Scholar

    LING S S, SHANG Y B, XIAO Q B, et al. A beneficiation method of lepidolite: 202210672590.7[P]. 2022-06-14.

    Google Scholar

    [47] 刘书杰, 肖巧斌, 赵晨, 等. 一种锂云母浮选捕收剂及选矿方法: 202211018318.3[P]. 2022-08-24.

    Google Scholar

    LIU S J, XIAO Q B, ZHAO C, et al. A lepidolite flotation collector and its beneficiation method: 202211018318.3[P]. 2022-08-24.

    Google Scholar

    [48] 朱先和. 一种用于矿物浮选的双子星座表面活性剂: 202210721486.2[P]. 2022-06-24.

    Google Scholar

    ZHU X H. A Gemini surfactant for mineral flotation: 202210721486.2[P]. 2022-06-24.

    Google Scholar

    [49] 杨志兆, 杨思琦, 谢帆欣, 等. 江西宜丰低品位锂云母矿中锂云母和长石的综合回收[J]. 矿产保护与利用, 2022(3): 24−29.

    Google Scholar

    YANG Z Z, YANG S Q, XIE F X, et al. Study on comprehensive recovery of lithium mica and feldspar from low grade lepidolite ore in Yifeng of Jiangxi[J]. Conservation and Utilization of Mineral Resources, 2022(3): 24−29.

    Google Scholar

    [50] 张骞, 张博. 新型捕收剂WZ-100在锂云母浮选中的应用研究[J]. 中国金属通报, 2021(9): 177−178.

    Google Scholar

    ZHANG Q, ZHANG B. Study on the application of novel collector WZ-100 in the flotation of Lepidolite[J]. Management and Other, 2021(9): 177−178.

    Google Scholar

    [51] 黄万抚, 肖芫华, 李新冬. HT选锂剂提高锂云母精矿品位及回收率研究[J]. 有色金属(选矿部分), 2012(4): 76−78.

    Google Scholar

    HUANG W F, XIAO Y H, LI X D. Study on improving the quality and recyclable rate of lithia mica by HT lithium flotation reagent[J]. Nonferrous Metals (Mineral Processing Sections), 2012(4): 76−78.

    Google Scholar

    [52] 苏建芳, 王中明, 刘书杰, 等. BK414在宜春钽铌矿浮选锂云母的工业试验[J]. 中国矿业, 2016(7): 114−117. doi: 10.3969/j.issn.1004-4051.2016.07.025

    CrossRef Google Scholar

    SU J F, WANG Z M, LIU S J, et al. Industrial test of lepidolite flotation with BK414 as a collector in Yichun tantalum & niobium ore[J]. China Mining Magazine, 2016(7): 114−117. doi: 10.3969/j.issn.1004-4051.2016.07.025

    CrossRef Google Scholar

    [53] 郭文萍, 刘述春. 低品位难选锂云母浮选的工业试验[J]. 矿业工程, 2019(6): 27−29.

    Google Scholar

    GUO W P, LIU S C. Commercial flotation test of low-grade refractory lithium mica[J]. Mining Engineering, 2019(6): 27−29.

    Google Scholar

    [54] 周高云. 浮选锂云母的新捕收剂研究[J]. 北京矿冶研究总院学报, 1992(1): 60−63.

    Google Scholar

    ZHOU G Y. Study of a new collector for lepidolite flotation[J]. Jounal of BGRIMM, 1992(1): 60−63.

    Google Scholar

    [55] 丰丽琴, 王云帆, 覃文庆, 等. 江西某低品位锂云母矿浮选试验研究[J]. 非金属矿, 2019(1): 60−62. doi: 10.3969/j.issn.1000-8098.2019.01.018

    CrossRef Google Scholar

    FENG L Q, WANG Y F, QIN W Q, et al. Experimental study on flotation of a low grade lepidolite ore from Jiangxi[J]. Non-Metallic Mines, 2019(1): 60−62. doi: 10.3969/j.issn.1000-8098.2019.01.018

    CrossRef Google Scholar

    [56] LIU Z Y, JIAO F, QIN W Q, et al. Collision-attachment law of lepidolite, feldspar and quartz with bubbles in the combined cationic and anionic collector system[J]. Physicochemical Problems of Mineral Processing, 2022, 58(6): 155324.

    Google Scholar

    [57] 胡红喜, 张忠汉, 刘超, 等. 内蒙古某钽铌尾矿回收锂云母工艺[J]. 有色金属(选矿部分), 2022(5): 79−85.

    Google Scholar

    HU H X, ZHANG Z H, LIU C, et al. Process for recovering lepidolite from tantalum-niobium tailings in Inner Mongolia[J]. Nonferrous Metals (Mineral Processing Sections), 2022(5): 79−85.

    Google Scholar

    [58] 李宏, 孙金龙, 谭秀民, 等. 某含铷花岗岩矿石中伴生钽铌锂的综合回收试验研究[J]. 金属矿山, 2022(11): 126−133.

    Google Scholar

    LI H, SUN J L, TAN X M, et al. Research study on comprehensive recovery for associated tantalum-niobium-lithium from a rubidium-bearing granite ore[J]. Metal Mine, 2022(11): 126−133.

    Google Scholar

    [59] 欧乐明, 张政军, 周浩. 一种不脱泥浮选铁锂云母的方法: 202010130705.0[P]. 2020-02-28.

    Google Scholar

    OU L M, ZHANG Z J, ZHOU H. A method of flotation of zinnwaldit without desliming: 202010130705.0[P]. 2020-02-28.

    Google Scholar

    [60] 艾伟明, 熊洪, 杨健, 等. 一种从锂云母选矿尾泥中回收锂云母精矿的方法: 202210263383.6[P]. 2022-03-17.

    Google Scholar

    AI W M, XIONG H, YANG J. A method of recovering lepidolite concentrate from the tailings of lepidolite beneficiation: 202210263383.6[P]. 2022-03-17.

    Google Scholar

    [61] 欧阳林莉. 内蒙古某锂云母矿选矿试验研究[J]. 湖南有色金属, 2021(4): 18−21. doi: 10.3969/j.issn.1003-5540.2021.04.005

    CrossRef Google Scholar

    OU Y L L. Experimental study on mineral processing of a lepidolite ore from Inner Mongolia[J]. Hunan Nonferrous Metals, 2021(4): 18−21. doi: 10.3969/j.issn.1003-5540.2021.04.005

    CrossRef Google Scholar

    [62] 周贺鹏, 张永兵, 雷梅芬, 等. 江西宜春高铁锂云母矿浮选分离试验研究[J]. 非金属矿, 2019(4): 64−67.

    Google Scholar

    ZHOU H P, ZHANG Y B, LEI M F, et al. Flotation separation test of zinnwaldite in Yichun of Jiangxi[J]. Non−metallic Mines, 2019(4): 64−67.

    Google Scholar

    [63] 刘跃龙, 刘够生. 一种锂云母浮选过程的选矿抑制剂: 201510788440.2[P]. 2015−11−17.

    Google Scholar

    LIU Y L, LIU G S. A beneficiation depressant for lepidolite flotation process: 201510788440.2[P]. 2015−11−17.

    Google Scholar

    [64] 陈红康, 孙爱明, 廖敏敏, 等. 一种不脱泥锂云母浮选方法: 202211318226.7[P]. 2022−10−26.

    Google Scholar

    CHEN H K, SUN A M, LIAO M M, et al. A flotation method of lepidolite without desliming: 202211318226.7[P]. 2022−10−26.

    Google Scholar

    [65] 欧乐明, 周浩, 张政军. 用于浮选铁锂云母的药剂组合物及其制备方法和应用: 202010129700.6[P]. 2020−02−28.

    Google Scholar

    OU L M, ZHOU H, ZHANG Z J. Reagent for flotation of zinnwaldite and its preparation method and application: 202010129700.6[P]. 2020−02−28.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(585) PDF downloads(127) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint