Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 5
Article Contents

ZHANG Shenghui, WANG Zhentao, LI Yongsheng, MO Xuanxue, DONG Qingji, CHEN Conglin, GENG Lin, WANG Li, ZHANG Haiqi, TAN Xiumin, XUE Yingxi, ZHOU Shangguo, TIAN Yuming, YAO Chaomei, JIAO Sen, CHEN Zhengguo, CHEN Junyuan, WANG Shoucheng, ZHANG Haoyu, FU Shuixing, WANG Chunlian, WANG Yong. List, Application and Global Pattern of Critical Minerals of China[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 138-168. doi: 10.13779/j.cnki.issn1001−0076.2022.07.016
Citation: ZHANG Shenghui, WANG Zhentao, LI Yongsheng, MO Xuanxue, DONG Qingji, CHEN Conglin, GENG Lin, WANG Li, ZHANG Haiqi, TAN Xiumin, XUE Yingxi, ZHOU Shangguo, TIAN Yuming, YAO Chaomei, JIAO Sen, CHEN Zhengguo, CHEN Junyuan, WANG Shoucheng, ZHANG Haoyu, FU Shuixing, WANG Chunlian, WANG Yong. List, Application and Global Pattern of Critical Minerals of China[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 138-168. doi: 10.13779/j.cnki.issn1001−0076.2022.07.016

List, Application and Global Pattern of Critical Minerals of China

  • Critical minerals refer to the mineral resources playing an essential role in our socio-economic development and national security. Some of them may have a great risks due to supply shortage, others may have a strong influence on global market due to our strong supply chains. At present, the international trade disputes have expanded from the economic and technological fields to the mineral resources. New challenges and new opportunities are faced to China’s security of mineral resources due to continue changes of world political and economic situation. Representative list of critical minerals/raw materials of the United States, the European Union and Japanese briefly introduced, and the present competitive situation of critical minerals in the world is analyzed in this contribution. Firstly, the list of critical minerals in various countries overlaps highly with each other. Secondly, major powers have put forward and implemented strategies to strengthen their security of supply chain. Thirdly, critical minerals are essential to the process of carbon neutrality. In this context, a recommended list of 37 critical minerals of China was put forward, including bulk minerals, three-type rare (rare, rare earth and rarely scattered) metal minerals, ferrous-nonferrous-precious metals minerals, strategic non-metallic minerals and special gas minerals. 31 of which coincide with the lists of the United States, the European Union and Japan. A general study on the application fields, global spatial distribution, production and trade patterns of the 37 critical minerals are carried out in this paper. The results indicate that these critical minerals are not only an indispensable material basis for the economic and social development of the world today, but also an irreplaceable material guarantee for the development of strategic emerging industries, clean energy, national defense and military technology. Among the 37 critical minerals, 22 are net imports, 19 are over 50% net imports, and 10 are over 90% net imports. And 11 critical minerals are of net exports, 5 are over 50% net exports, especially gallium is over 90% net exports. At the end of this paper, the security strategy of China’s critical minerals is discussed. Firstly, the list of critical minerals should be formulated, published and updated timely. Secondly, a number of key core technologies should be mastered and systematically arranged based on the whole industrial chain. Thirdly, arrangements for the scarce and advantageous minerals should be made overall to improve the right of speech and control. Fourthly, the technical breakthroughs of the domestic resources in the stage of survey, exploration, mineral processing and smelting and others should be strengthened. Fifthly, the critical minerals reserve system should be established. Sixthly, the cooperation in the exploration and development of overseas resources should be strengthened. Seventhly, the relevant legal system should be improved. Among them, it is particularly important to arrange the entire industrial chain, plan the scarce and advantageous minerals as a whole and increase the survey and exploration efforts.

  • 加载中
  • [1] OECD. Global material resources outlook to 2060: Economic drivers and enviorenment consequences, OECD Publishing, Paris[EB/OL]. (2019-12-12) [2022-09-08]. https://doi.org/10.1787/9789264307452.en.

    Google Scholar

    [2] U. S. Geological Survey. Critical mineral resources of the United States-Economic and environmental geology and prospects for future supply[R]. New York: U. S. Geological Survey Professional, 2017.

    Google Scholar

    [3] 毛景文, 杨宗喜, 谢桂青, 等. 关键矿产—国际动向与思考[J]. 矿床地质, 2019, 38(4): 689−698.

    Google Scholar

    MAO J W, YANG Z X, XIE G Q, et al. Critical minerals: International trends and thinking[J]. Mineral Deposits, 2019, 38(4): 689−698.

    Google Scholar

    [4] FORTIER S M, NASSAR N T, LEDERER G W, et al. Draft critical mineral list- summary of methodology and background information-U. S. Geological Survey technical input document in response to secretarial order No. 3359[R]. Reston, VA: U. S. Geological Survey, 2018.

    Google Scholar

    [5] U. S. Geological Survey. 2022 final list of critical minerals[EB/OL]. (2022-02-24) [2022-09-10]. https://www.federalregister.gov/documents/2022/02/24/2022-04027/2022-final-list-of-critical-minerals.

    Google Scholar

    [6] European Commission. Report on critical raw materials and the circular economy [EB/OL]. [2022-09-08]. https://ec.europa.eu/info/publications/report-critical-raw-materials-and-circular-economy_en.

    Google Scholar

    [7] European Commission. Critical raw materials resilience: charting a path towards greater security and sustainability[EB/OL]. (2020-09-15) [2022-09-10].https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0474.

    Google Scholar

    [8] 曹庭宇. 日本稀有金属保障战略[J]. 国土资源情报, 2011(4): 42-46

    Google Scholar

    CAO T Y. The protection strategy of rare metal in Japanese. Natural Resources Information, 2011(4): 42-46.

    Google Scholar

    [9] U. S. Department of Commerce. A federal strategy to ensure secure and reliable supplies of critical minerals[EB/OL]. (2019-06-04) [2022-09-12].https://www.commerce.gov/data-and-reports/reports/2019/06/federal-strategy-ensure-secure-and-reliable-supplies-critical-minerals.

    Google Scholar

    [10] 総合資源エネルギー調査会, 資源燃料分科会. 新·国際資源戦略策定に向けた提言. 2020[EB/OL]. (2020-03-30) [2022-09-12]. https: //www. meti. go. jp/press/2019/03/20200330009/20200330009. html.

    Google Scholar

    Comprehensive Resources and Energy Research Committee, Resource and Fuel Subcommittee Proposals for the formulation of a new international resource strategy[EB/OL]. (2020-03-30) [2022-09-13].https://www.meti.go.jp/press/2019/03/20200330009/20200330009.html.

    Google Scholar

    [11] International Energy Agency. The role of critical minerals in clean energy transitions[EB/OL]. (2021-05-01) [2022-09-13]. https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions.

    Google Scholar

    [12] 中华人民共和国国土资源部. 2011中国矿产资源报告[M]. 北京: 地质出版社, 1-110

    Google Scholar

    Ministry of Land and Resources, PRC. China Mineral Resources 2011[M]. Beijing: Geological Publishing House, 1-110.

    Google Scholar

    [13] 王安建, 王高尚, 邓祥征, 等. 新时代中国战略性关键矿产资源安全与管理[J]. 中国科学基金, 2019(2): 133−140. doi: 10.16262/j.cnki.1000-8217.2019.02.006

    CrossRef Google Scholar

    WANG A J, WANG G S, DENG X Z, et al. Security and management of China’s critical mineral resources in the New Era[J]. Bulletin of National Natural Science Foundation, 2019(2): 133−140. doi: 10.16262/j.cnki.1000-8217.2019.02.006

    CrossRef Google Scholar

    [14] 文博杰, 陈毓川, 王高尚, 等. 2035 年中国能源与矿产资源需求展望[J]. 中国工程科学, 2019, 21(1):68-73

    Google Scholar

    WEN B J, CHEN Y C, WANG G S, et al. China’s demand for energy and mineral resources by 2035[J]. Strategic Study of CAE, 2019, 21(1): 68-73.

    Google Scholar

    [15] BOLM C. A new iron age[J]. Nature Chemistry, 2009(1): 420.

    Google Scholar

    [16] EMSLEY J. Manganese the protector[J]. Nature Chemistry, 2013(5): 978.

    Google Scholar

    [17] 王运锋, 何蕾, 郭薇. C919大型客机总装下线助推我国材料产业发展[J]. 新材料产业, 2016(1): 25−31. doi: 10.3969/j.issn.1008-892X.2016.01.007

    CrossRef Google Scholar

    WANG Y F, HE L, GUO W. The final assembly line of the C919 large passenger jet boosting the development of China’s materials industry[J]. Advanced Materials Industry, 2016(1): 25−31. doi: 10.3969/j.issn.1008-892X.2016.01.007

    CrossRef Google Scholar

    [18] 董生智, 李卫. 稀土永磁材料的应用技术[J]. 金属功能材料, 2018, 25(4): 1−7. doi: 10.13228/j.boyuan.issn1005-8192.2018039

    CrossRef Google Scholar

    DONG S Z, LI W. The application technology of rare earth permanent magnetic material[J]. Metallic Functional Materials, 2018, 25(4): 1−7. doi: 10.13228/j.boyuan.issn1005-8192.2018039

    CrossRef Google Scholar

    [19] 李中华, 张卫平, 刘甲祥. 稀土材料在现代军事技术上的应用及发展趋势[J]. 湖南冶金, 2006, 34(4): 44−48.

    Google Scholar

    LI Z H, ZHANG W P, LIU J X. Application and development trend of rare earth materials in modern military technology[J]. Hunan Geology, 2006, 34(4): 44−48.

    Google Scholar

    [20] GROCHALA W. First there was hydrogen[J]. Nature Chemistry, 2015(7): 264.

    Google Scholar

    [21] 李国玲, 李星国. 稀土金属及其金属间化合物的研究与应用[J]. 中国稀土学报, 2016, 34(6): 748−763.

    Google Scholar

    LI G L, LI X G. Research and application of rare earth metal and intermetallic[J]. Journal of the Chinese Society of Rare Earths, 2016, 34(6): 748−763.

    Google Scholar

    [22] 张萌, 高鹏. 新型铜—稀土系引线框架材料研制[J]. 江西冶金, 2003, 23(6): 58−61+68. doi: 10.3969/j.issn.1006-2777.2003.06.015

    CrossRef Google Scholar

    ZHANG M, GAO P. Study on some Cu-RE alloys for new lead-frame materials[J]. Jiangxi Metallurgy, 2003, 23(6): 58−61+68. doi: 10.3969/j.issn.1006-2777.2003.06.015

    CrossRef Google Scholar

    [23] 屠海令, 王磊, 杜军. 半导体集成电路用金属硅化物的制备与检测评价[J]. 稀有金属, 2009, 33(4): 453-461

    Google Scholar

    TU H L, WANG L, DU J. Preparation and characterization of metal silicides used for semiconductor integrated circuits[J]. 2009, 33(4): 453-461.

    Google Scholar

    [24] 姜楠, 张亮, 熊明月, 等. 电子封装无铅软钎焊技术研究进展[J]. 材料导报, 2019, 33(12): 3862-3875

    Google Scholar

    JIANG N, ZHANG L, XIONG M Y, et al. Preparation and characterization of metal silicides used for semiconductor integrated circuits[J]. 2019, 33(12): 3862-3875.

    Google Scholar

    [25] THORNTON1 B F, BURDETTE S C. Seekers of the lost lanthanum[J]. Nature Chemistry, 2019, 11: 188. doi: 10.1038/s41557-018-0208-3

    CrossRef Google Scholar

    [26] SCHELTER E J. Cerium under the lens[J]. Nature Chemistry, 2013(5): 348.

    Google Scholar

    [27] DINGLE A. Praseodymium unpaired[J]. Nature Chemistry, 2018(10): 576.

    Google Scholar

    [28] THORNTON B F, BURDETTE S C. The neodymium neologism[J]. Nature Chemistry, 2017(9): 194.

    Google Scholar

    [29] STREKOPYTOV S. Salute to samarium[J]. Nature Chemistry, 2016(8): 816.

    Google Scholar

    [30] BÜNZLI J C. Europium in the limelight[J]. Nature Chemistry, 2010(2): 696.

    Google Scholar

    [31] PYYKKÖ P. Magically magnetic gadolinium[J]. Nature Chemistry, 2015(7): 680.

    Google Scholar

    [32] DENG G. Terbium glows green[J]. Nature Chemistry, 2018(10): 110.

    Google Scholar

    [33] GATTESCHI D. Anisotropic dysprosium[J]. Nature Chemistry, 2011(3): 830.

    Google Scholar

    [34] THORNTON B F, BURDETTE S C. Homely holmium[J]. Nature Chemistry, 2015(7): 532.

    Google Scholar

    [35] PIGUET C. Extricating erbium[J]. Nature Chemistry, 2014(6): 370.

    Google Scholar

    [36] ARNOLD P. Thoroughly enthralling thulium[J]. Nature Chemistry, 2017(9): 1288.

    Google Scholar

    [37] SKELTON A, THORNTON B F. Iterations of ytterbium[J]. Nature Chemistry, 2017(9): 402.

    Google Scholar

    [38] ÖHRSTRÖM L. Rounding up lutetium[J]. Nature Chemistry, 2018(10): 372.

    Google Scholar

    [39] EMSLEY J. Unsporting scandium[J]. Nature Chemistry, 2014(6): 1025.

    Google Scholar

    [40] DINÉR P. Yttrium from ytterby[J]. Nature Chemistry, 2016(8): 192.

    Google Scholar

    [41] TARASCON J M. Is lithium the new gold?[J]. Nature Chemistry, 2010(2): 510.

    Google Scholar

    [42] PUCHTA R. A brighter beryllium[J]. Nature Chemistry, 2011(3): 416.

    Google Scholar

    [43] TARSELLI M A. Subtle niobium[J]. Nature Chemistry, 2015(7): 180.

    Google Scholar

    [44] BACCOLO G. Tantalizing tantalum[J]. Nature Chemistry, 2015(7): 854.

    Google Scholar

    [45] 张晏清, 邱琴, 张雄. 六角晶系钡铁氧体与锶铁氧体吸波性能的比较[J]. 材料导报, 2009, 23(5): 5−7. doi: 10.3321/j.issn:1005-023X.2009.05.002

    CrossRef Google Scholar

    ZHANG Y Q, QIU Q, ZHANG X. Comparison of microwave absorbing property between hexagonal barium ferrite and strontium ferrite[J]. Materials Reports, 2009, 23(5): 5−7. doi: 10.3321/j.issn:1005-023X.2009.05.002

    CrossRef Google Scholar

    [46] COUDERT F X. Strontium’s scarlet sparkles[J]. Nature Chemistry, 2015(7): 940.

    Google Scholar

    [47] GEORGESCU I. Rubidium Round-the-Clock[J]. Nature Chemistry, 2015(7): 1034.

    Google Scholar

    [48] ANSOBORLO E, LEGGETT R W. Quantum cesium[J]. Nature Chemistry, 2015(7): 360.

    Google Scholar

    [49] EMSLEY J. The A–Z of Zirconium[J]. Nature Chemistry, 2014(6): 254.

    Google Scholar

    [50] BURDETTE S C, THORNTON B F. Hafnium the Lutécium I Used to be[J]. Nature Chemistry, 2018(10): 1074.

    Google Scholar

    [51] BRENNAN M. Gregarious gallium[J]. Nature Chemistry, 2014(6): 1108.

    Google Scholar

    [52] BURDETTE S C, Thornton B F. The germination of germanium[J]. Nature Chemistry, 2018(10): 244.

    Google Scholar

    [53] RENOUF C. A touch of indium[J]. Nature Chemistry, 2012(4): 862.

    Google Scholar

    [54] SCERRI E. Recognizing rhenium[J]. Nature Chemistry, 2010(2): 598.

    Google Scholar

    [55] 黄洪涛, 王卫军, 钟武烨, 等. 钼铼合金在空间核电源中的应用性能研究进展[J]. 原子能科学技术, 2020, 54(3): 505−511. doi: 10.7538/yzk.2019.youxian.0251

    CrossRef Google Scholar

    HUANG H T, WANG W J, ZHONG W Y, et al. Research progress on application of Mo-Re alloy in space nuclear power[J]. Atomic Energy Science and Technology, 2020, 54(3): 505−511. doi: 10.7538/yzk.2019.youxian.0251

    CrossRef Google Scholar

    [56] IBERS J. Tellurium in a twist[J]. Nature Chemistry, 2009(1): 508.

    Google Scholar

    [57] LENNARTSON A. The colours of chromium[J]. Nature Chemistry, 2014(6): 942.

    Google Scholar

    [58] TARONI A. V for vanadium[J]. Nature Chemistry, 2017(9): 602.

    Google Scholar

    [59] TARSELLI M A. Titanium tales[J]. Nature Chemistry, 2013(5): 546.

    Google Scholar

    [60] KNOCHEL P. A flash of magnesium[J]. Nature Chemistry, 2009(1): 740.

    Google Scholar

    [61] CATHERINE Drennan. In the nickel of time[J]. Nature Chemistry, 2010(2): 900.

    Google Scholar

    [62] LINDSAY D, KERR W. Cobalt close-up[J]. Nature Chemistry, 2011(3): 494.

    Google Scholar

    [63] GOYA P, MARTÍN N, ROMÁN P. W for tungsten and wolfram[J]. Nature Chemistry, 2011(3): 336.

    Google Scholar

    [64] TARSELLI M A. Tin can[J]. Nature Chemistry, 2017(9): 500.

    Google Scholar

    [65] HANSELL C. All manner of antimony[J]. Nature Chemistry, 2015(7): 88.

    Google Scholar

    [66] MOHAN R. Green bismuth[J]. Nature Chemistry, 2010(2): 336.

    Google Scholar

    [67] YAM V W W. Behind platinum’s sparkle[J]. Nature Chemistry, 2010(2): 790.

    Google Scholar

    [68] 赵玉媛. 各向异性导电膜的组成及技术要求[J]. 电子世界, 2016(14):131

    Google Scholar

    ZHAO Y Y. Composition and technical requirements of anisotropic conductive films[J]. Electronics World, 2016(14): 131.

    Google Scholar

    [69] 金嘉炜, 刘传扬, 张冶, 等. 金纳米线的制备及传感应用研究进展[J]. 材料导报, 2020, 34(3): 5085−5095. doi: 10.11896/cldb.18080105

    CrossRef Google Scholar

    JIN J W, LIU C Y, ZHANG Y, et al. Preparation and application in sensing fields of gold nanowires[J]. Materials Reports, 2020, 34(3): 5085−5095. doi: 10.11896/cldb.18080105

    CrossRef Google Scholar

    [70] HUTCHINGS G. A golden future[J]. Nature Chemistry, 2009(1): 584.

    Google Scholar

    [71] JAARONIEC M. Silicon beyond the vally[J]. Nature Chemistry, 2009(1): 166.

    Google Scholar

    [72] ROESKY H W. A flourish of fluorine[J]. Nature Chemistry, 2010(2): 240.

    Google Scholar

    [73] HERMAN C. Cool as helium[J]. Nature Chemistry, 2012(4): 140.

    Google Scholar

    [74] United States Geological Survey (USGS). Mineral commodity summaries 2022 [R]. Reston VA: U. S. Geological Survey, 2022: 1-202.

    Google Scholar

    [75] 张典波, 万海明, 郑江. 世界铁矿石资源情况及中国铁矿石供需态势[J]. 中国冶金, 2004(6): 26−29. doi: 10.3969/j.issn.1006-9356.2004.06.006

    CrossRef Google Scholar

    ZHANG D B, WAN H M, ZHENG J. Analysis on global iron ore resources and china' s iron ore supply and demand[J]. China Metallurgy, 2004(6): 26−29. doi: 10.3969/j.issn.1006-9356.2004.06.006

    CrossRef Google Scholar

    [76] 严旺生, 高海亮. 世界锰矿资源及锰矿业发展[J]. 中国锰业, 2009, 27(3): 6−11. doi: 10.3969/j.issn.1002-4336.2009.03.002

    CrossRef Google Scholar

    YAN W S, GAO H L. The resource of mn ore & its development of mn-mining[J]. China Manganese Industry, 2009, 27(3): 6−11. doi: 10.3969/j.issn.1002-4336.2009.03.002

    CrossRef Google Scholar

    [77] 覃德亮, 陈南雄. 2020 年全球锰矿及我国锰产品生产简述[J]. 中国锰业, 2021, 39(4): 10−12.

    Google Scholar

    QIN D L, CHEN N X. 2020 global manganese ore and the production brief in China’s manganese products[J]. China Manganese Industry, 2021, 39(4): 10−12.

    Google Scholar

    [78] 江少卿. 全球铜矿资源分布[J]. 世界有色金属, 2018(2): 1−3.

    Google Scholar

    JIANG S Q. The distribution of copper resources in the world[J]. World Nonferrous Metals, 2018(2): 1−3.

    Google Scholar

    [79] 沈建鑫. 我国铜资源国际贸易研究[J]. 冶金经济与管理, 2019(5): 21−24. doi: 10.3969/j.issn.1002-1779.2019.05.007

    CrossRef Google Scholar

    SHEN J X. The study on China’s international trade of copper resources[J]. Metallurgical economy and management, 2019(5): 21−24. doi: 10.3969/j.issn.1002-1779.2019.05.007

    CrossRef Google Scholar

    [80] 张海坤, 胡鹏, 姜军胜, 等. 铝土矿分布特点、主要类型与勘查开发现状[J]. 中国地质, 2021, 48(1): 68−81. doi: 10.12029/gc20210105

    CrossRef Google Scholar

    ZHANG H K, HU P, JIANG J S, et al. Distribution, genetic types and current situation of exploration and development of bauxite resources[J]. Geology in China, 2021, 48(1): 68−81. doi: 10.12029/gc20210105

    CrossRef Google Scholar

    [81] 陈昱鸣. 全球铝土矿贸易格局及对干散货航运市场的影响[J]. 世界海运, 2020, 43(12): 7−16. doi: 10.16176/j.cnki.21-1284.2020.12.002

    CrossRef Google Scholar

    CHEN Y M. The trade pattern of the global bauxite and its impact on the shipping market of dry bulk[J]. World Shipping, 2020, 43(12): 7−16. doi: 10.16176/j.cnki.21-1284.2020.12.002

    CrossRef Google Scholar

    [82] 熊增华, 王石军. 中国钾资源开发利用技术及产业发展综述[J]. 矿产保护与利用, 2020(6): 1−7. doi: 10.13779/j.cnki.issn1001-0076.2020.06.001

    CrossRef Google Scholar

    XIONG Z H, WANG S J. Overview of potassium resources exploitation & utilization technology and potash industry development[J]. Conservation and Utilization of Mineral Resources, 2020(6): 1−7. doi: 10.13779/j.cnki.issn1001-0076.2020.06.001

    CrossRef Google Scholar

    [83] 屈小荣, 亓昭英. 我国钾肥行业现状及未来发展趋势分析[J]. 肥料与健康, 2020, 47(5): 7−11. doi: 10.3969/j.issn.2096-7047.2020.05.003

    CrossRef Google Scholar

    QU X R, QI S Y. Analysis of current situation and future development trend of China’s potash fertilizer industry[J]. Fertilizer & Health, 2020, 47(5): 7−11. doi: 10.3969/j.issn.2096-7047.2020.05.003

    CrossRef Google Scholar

    [84] 郑国栋, 王琨, 陈其慎, 等. 世界稀土产业格局变化与中国稀土产业面临的问题[J]. 地球学报, 2021, 42(2): 265−272. doi: 10.3975/cagsb.2020.102301

    CrossRef Google Scholar

    ZHENG G D, WANG K, CHEN Q S, et al. The change of world rare earth industrial structure and the problems faced by China’s rare earth industry[J]. Acta Geoscientica Sinica, 2021, 42(2): 265−272. doi: 10.3975/cagsb.2020.102301

    CrossRef Google Scholar

    [85] 夏启繁, 杜德斌, 段德忠, 等. 中国稀土对外贸易格局演化及影响因素[J]. 地理学报, 2022, 77(4): 976−995. doi: 10.11821/dlxb202204014

    CrossRef Google Scholar

    XIA Q F, DU D B, DUAN D Z, et al. Evolution and influencing factors of China's foreign trade in rare earth metals[J]. Acta Geographica Sinica, 2022, 77(4): 976−995. doi: 10.11821/dlxb202204014

    CrossRef Google Scholar

    [86] 张苏江, 崔立伟, 孔令湖, 等. 国内外锂矿资源及其分布概述[J]. 有色金属工程, 2020, 10(10): 95−104. doi: 10.3969/j.issn.2095-1744.2020.10.015

    CrossRef Google Scholar

    ZHANG S J, CUI L W, KONG L H, et al. Summarize on the lithium mineral resources and their distribution at home and abroad[J]. Nonferrous Metals Engineering, 2020, 10(10): 95−104. doi: 10.3969/j.issn.2095-1744.2020.10.015

    CrossRef Google Scholar

    [87] 陈光辉. 2020 年中日韩锂盐进出口情况简析[J]. 世界有色金属, 2021(4): 1−3. doi: 10.3969/j.issn.1002-5065.2021.04.001

    CrossRef Google Scholar

    CHEN G H. Brief analysis of lithium salt import and export of China, Japan and South Korea in 2020[J]. World Nonferrous Metals, 2021(4): 1−3. doi: 10.3969/j.issn.1002-5065.2021.04.001

    CrossRef Google Scholar

    [88] 李娜, 高爱红, 王小宁. 全球铍资源供需形势及建议[J]. 中国矿业, 2019, 28(4): 69−73.

    Google Scholar

    LI N, GAO A H, WANG X N. Global beryllium supply and demand trends and its enlightenment[J]. China Mining Magazine, 2019, 28(4): 69−73.

    Google Scholar

    [89] 王汝成, 车旭东, 邬斌, 等. 中国铌钽锆铪资源[J]. 科学通报, 2020, 65(33): 3763−3777. doi: 10.1360/TB-2020-0271

    CrossRef Google Scholar

    WANG R C, CHE X D, WU B, et al. Critical mineral resources of Nb, Ta, Zr, and Hf in China[J]. Chinese Science Bulletin, 2020, 65(33): 3763−3777. doi: 10.1360/TB-2020-0271

    CrossRef Google Scholar

    [90] 邓攀, 陈玉明, 叶锦华, 等. 全球铌钽资源分布概况及产业发展形势分析[J]. 中国矿业, 2019, 28(4): 63-68

    Google Scholar

    DENG P, CHEN Y M, YE J H, et al. Study on the resource distribution and industry development of global niobium and tantalum[J]. China Mining Magazine, 2019, 28(4): 63-68.

    Google Scholar

    [91] 徐桂芬, 胡玥, 任卉, 等. 中国锶矿供需形势分析及展望[J]. 国土资源情报, 2020(10): 81−84.

    Google Scholar

    XU G R, HU Y, REN H, et al. Analysis and prospect of supply and demand situation of strontium in China[J]. Natural Resources Information, 2020(10): 81−84.

    Google Scholar

    [92] 郭娟, 崔荣国, 王卉, 等. 世界铼资源供需现状及展望[J]. 国土资源情报, 2020(10): 67−74.

    Google Scholar

    GUO J, CUI R G, WANG H, et al. Supply and demand situation and outlook of global rhenium resources[J]. Natural Resources Information, 2020(10): 67−74.

    Google Scholar

    [93] 王代军, 贺万才. 浅析我国铬铁合金冶炼发展趋势[J]. 铁合金, 2020(4): 40−44. doi: 10.16122/j.cnki.issn1001-1943.2020.04.010

    CrossRef Google Scholar

    WANG D J, HE W C. Analysis on the development trend of ferrochrome smelting in China[J]. Ferro-Alloys, 2020(4): 40−44. doi: 10.16122/j.cnki.issn1001-1943.2020.04.010

    CrossRef Google Scholar

    [94] 吴优, 陈东辉, 刘武汉, 等. 2020年全球钒工业发展报告[J]. 钢铁钒钛, 2021, 42(5): 1−9. doi: 10.7513/j.issn.1004-7638.2021.05.001

    CrossRef Google Scholar

    WU Y, CHEN D H, LIU W H, et al. Global vanadium industry development report 2020[J]. Iron Steel Vanadium Titanium, 2021, 42(5): 1−9. doi: 10.7513/j.issn.1004-7638.2021.05.001

    CrossRef Google Scholar

    [95] 余泽全, 苏刚. 2020年中国钨工业发展报告[J]. 中国钨业, 2021, 36(2): 1−9. doi: 10.3969/j.issn.1009-0622.2021.02.001

    CrossRef Google Scholar

    YU Z Q, SU G. Developement report of China tungsten industry in 2020[J]. China Tungsten Industry, 2021, 36(2): 1−9. doi: 10.3969/j.issn.1009-0622.2021.02.001

    CrossRef Google Scholar

    [96] 龙涛, 陈其慎, 于汶加, 等. 中国铋供需形势分析及对策建议[J]. 中国矿业, 2016, 25(5): 11−15.

    Google Scholar

    LONG T, CHEN Q S, YU W J, et al. The analysis and suggestions of the bismuth's supply and demand in China[J]. China Mining Magazine, 2016, 25(5): 11−15.

    Google Scholar

    [97] 姬长征, 田孝光. 我国铂族金属产业现状及战略储备研究[J]. 中国有色金属, 2022(9): 48−49. doi: 10.3969/j.issn.1673-3894.2022.09.016

    CrossRef Google Scholar

    JI C Z, TIAN X G. Research on the industry status and strategic reserve of platinum group metal in China[J]. China Nonferrous Metals, 2022(9): 48−49. doi: 10.3969/j.issn.1673-3894.2022.09.016

    CrossRef Google Scholar

    [98] 郝文俊, 冯书文, 詹建华, 等. 全球高纯石英资源现状、生产、消费及贸易格局[J]. 中国非金属矿工业导刊, 2020(5): 15−19. doi: 10.3969/j.issn.1007-9386.2020.05.005

    CrossRef Google Scholar

    HAO W J, FENG S W, ZHAN J H, et al. Current situation, production, consumption and trade pattern of high purity quartz in the world[J]. China Non-metallic Minerals Industry, 2020(5): 15−19. doi: 10.3969/j.issn.1007-9386.2020.05.005

    CrossRef Google Scholar

    [99] 陈军元, 颜玲亚, 刘艳飞, 等. 全球石墨资源供需形势分析[J]. 国土资源情报, 2020(10): 90−97.

    Google Scholar

    CHEN J Y, YAN Y L, LIU Y F, et al. Analysis of supply and demand situation of global graphite resources[J]. Natural Resources Information, 2020(10): 90−97.

    Google Scholar

    [100] 徐鼎, 吕晶, 刘倩, 等. 中国萤石资源进出口贸易现状特征分析及建议[J]. 现代矿业, 2019(10): 12−15. doi: 10.3969/j.issn.1674-6082.2019.10.004

    CrossRef Google Scholar

    XU D, LV J, LIU Q, et al. Analysis and suggestions on the current situation of China’s fluorite resources import and export trade[J]. Modern Mining, 2019(10): 12−15. doi: 10.3969/j.issn.1674-6082.2019.10.004

    CrossRef Google Scholar

    [101] 焦森, 郑厚义, 屈云燕, 等. 全球硼矿资源供需形势分析[J]. 国土资源情报, 2020(10): 85−89.

    Google Scholar

    JIAO S, ZHENG H Y, QU Y Y, et al. Supply and demand situation of global boron resources[J]. Natural Resources Information, 2020(10): 85−89.

    Google Scholar

    [102] 周军, 陈玉麟, 王璿清, 等. 氦气资源产量及市场发展现状分析[J]. 天然气化工-C1化学与化工, 2022(47): 1−7.

    Google Scholar

    ZHOU J, CHEN Y L, WANG R Q, et al. Analysis of helium resource production and market development status[J]. Natural Gas Chemical Industry, 2022(47): 1−7.

    Google Scholar

    [103] 高风平, 张璞, 刘大成, 等. 国际稀土市场新格局与中国稀土产业战略选择[J]. 国际贸易问题, 2019(7): 63−81. doi: 10.13510/j.cnki.jit.2019.07.005

    CrossRef Google Scholar

    GAO F P, ZHANG P, LIU D C, et al. The rare earths global market updates and the rare earths industry master plan of the United States and its allies[J]. Journal of International Trade, 2019(7): 63−81. doi: 10.13510/j.cnki.jit.2019.07.005

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(2)

Article Metrics

Article views(21) PDF downloads(1) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint