Citation: | ZHAO Yuhang, LV Jinfang, WU Weiming, LIANG Guanyu, CHEN Luzheng. Research Development of Flotation Separation Between Chalcopyrite and Molybdenite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 169-178. doi: 10.13779/j.cnki.issn1001−0076.2022.01.037 |
Chalcopyrite and molybdenite are often associated in porphyry deposits, and they have very similar floatability. Therefore, the flotation separation between chalcopyrite and molybdenite has become important and difficult points. Flotation technology is a common method for the separation of chalcopyrite and molybdenite, and flotation reagents are critical to control the separation efficiency. Based on the crystal structure, surface wettability, surface electrical properties and other physicochemical properties of chalcopyrite and molybdenite, the separation difficulties were analyzed. In addition, the process of copper-molybdenum separation and the research development of flotation reagents were discussed systematically. The future development of flotation separation of chalcopyrite and molybdenite was prospected. The aim of the paper is to provide references for peers.
[1] | 崔荣国, 郭娟, 徐桂芬, 等. 全球铜的生产与消费及其未来需求预测[J]. 资源科学, 2015, 37(5): 944−950. CUI R G, GUO J, XU G F, et al. Global copper production and consumption and its future demand forecast[J]. Resource Science, 2015, 37(5): 944−950. |
[2] | 张亮, 杨卉芃, 冯安生, 等. 全球钼矿资源现状及市场分析[J]. 矿产综合利用, 2019(3): 11−16. doi: 10.3969/j.issn.1000-6532.2019.03.003 ZHANG L, YANG H P, FENG A S, et al. Global molybdenum resource status and market analysis[J]. Mineral Comprehensive Utilization, 2019(3): 11−16. doi: 10.3969/j.issn.1000-6532.2019.03.003 |
[3] | SONG S X, ZHANG X W, YANG B Q, et al. Flotation of molybdenite fines as hydrophobic agglomerates[J]. Separation and Purification Technology, 2012, 98: 451−455. doi: 10.1016/j.seppur.2012.06.016 |
[4] | 侯增谦, 杨志明. 中国大陆环境典型斑岩型矿床成矿规律和找矿模型研究进展(代序言)[J]. 矿床地质, 2012, 31(4): 645−646. doi: 10.3969/j.issn.0258-7106.2012.04.001 HOU Z Q, YANG Z M. Progress in metallogenic regularity and prospecting models of typical porphyry deposits in Chinese mainland (Preface)[J]. Geology, 2012, 31(4): 645−646. doi: 10.3969/j.issn.0258-7106.2012.04.001 |
[5] | ABDOLLAHI M, BAHRAMI A, MIRMOHAMMADI M S, et al. A process mineralogy approach to optimize molybdenite flotation in copper–molybdenum processing plants[J]. Minerals Engineering, 2020: 157. |
[6] | 袁致涛,王常任. 磁电选矿[M]. 北京: 冶金工业出版社, 2011: 295-296. YUAN Z T, WANG C R. Magnetoelectric beneficiation[M]. Beijing: Metallurgical Industry Press, 2011: 295-296. |
[7] | 王淀佐,邱冠周,胡岳华. 资源加工学[M]. 北京: 科技出版社, 2005: 25. WANG D Z, QIU G Z, HU Y H. Resource processing[M]. Beijing: Science and Technology Press, 2005: 25. |
[8] | MCCLUNG C R. Molybdenite polytypism and its implications for processing and recovery: A geometallurgical-based case study from Bingham Canyon Mine, Utah[J]. Minerals & Metallurgical Processing, 2016, 33(3): 149−154. |
[9] | CASTRO S, LOPEZ V A, LASKOWSKI J S. Review of the flotation of molybdenite. Part I: Surface properties and floatability[J]. International Journal of Mineral Processing, 2016, 148: 48−58. doi: 10.1016/j.minpro.2016.01.003 |
[10] | ZANIN M, AMETOV I, GRANO S, et al. A study of mechanisms affecting molybdenite recovery in a bulk copper/molybdenum flotation circuit[J]. International Journal of Mineral Processing, 2009, 93(3): 256−266. |
[11] | ANDREW K, GONG X, LIU H T, et al. Understanding the Intrinsic Water Wettability of Molybdenum Disulfide (MoS2)[J]. Langmuir:the ACS journal of surfaces and colloids, 2015, 31(30): 8429−8435. doi: 10.1021/acs.langmuir.5b02057 |
[12] | LU Z Z, LIU Q X, XU Z H, et al. Probing Anisotropic Surface Properties of Molybdenite by Direct Force Measurements[J]. Langmuir:the ACS journal of surfaces and colloids, 2015, 31(42): 11409−11418. doi: 10.1021/acs.langmuir.5b02678 |
[13] | RAGHAVAN S. HSU L L. Factors affecting the flotation recovery of molybdenite from porphyry copper ores[J]. International Journal of Mineral Processing, 1984, 12(1/2/3): 145−162. doi: 10.1016/0301-7516(84)90026-7 |
[14] | YUAN D W, CADIEN K, LIU Q, et al. Separation of talc and molybdenite: challenges and opportunities[J]. Minerals Engineering, 2019, 143(C): 105923−105923. |
[15] | 苏超, 刘殿文, 申培伦, 等. 黄铜矿和方铅矿的电化学特性及浮选行为研究进展[J]. 有色金属工程, 2020, 10(9): 79−87. doi: 10.3969/j.issn.2095-1744.2020.09.013 SU C, LIU D W, SHEN P L, et al. Research progress on electrochemical characteristics and flotation behavior of chalcopyrite and galena[J]. Nonferrous Metals Engineering, 2020, 10(9): 79−87. doi: 10.3969/j.issn.2095-1744.2020.09.013 |
[16] | ZHAO H B, ZHANG Y S, ZHANG X, et al. The dissolution and passivation mechanism of chalcopyrite in bioleaching: An overview[J]. Minerals Engineering, 2019, 136: 140−154. doi: 10.1016/j.mineng.2019.03.014 |
[17] | 马骏, 汪菊香, 武彪, 等. 晶体结构对黄铜矿、黄铁矿生物浸出差异性影响[J]. 中国有色金属学报, 2015, 25(10): 2898−2904. doi: 10.19476/j.ysxb.1004.0609.2015.10.029 MA J, WANG J X, WU B, et al. Influence of crystal structure on Bioleaching of chalcopyrite and pyrite[J]. Acta Nonferrous Metals Sinica, 2015, 25(10): 2898−2904. doi: 10.19476/j.ysxb.1004.0609.2015.10.029 |
[18] | CHEN X, GU G H, CHEN Z X. Seaweed glue as a novel polymer depressant for the selective separation of chalcopyrite and galena[J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(12): 1495−1503. doi: 10.1007/s12613-019-1848-z |
[19] | HIRAJIMA T, MIKI H, SUYANTARA G P W, et al. Selective flotation of chalcopyrite and molybdenite with H2O2 oxidation[J]. Minerals Engineering, 2017, 100: 83−92. doi: 10.1016/j.mineng.2016.10.007 |
[20] | 吴海祥. 低碱度下黄铁矿与黄铜矿的浮选分离试验研究[D]. 昆明: 昆明理工大学, 2021. WU H X. Experimental study on flotation separation of pyrite and chalcopyrite under low alkalinity[D]. Kunming: Kunming University of Science and Technology, 2021. |
[21] | H·郭, 崔洪山, 李长根. 黄铜矿的矿浆电位和可浮性[J]. 国外金属矿选矿, 2003(9): 17−23. GUO H, CUI H S, LI C G. Slurry potential and floatability of chalcopyrite[J]. Foreign Metal Ore Dressing, 2003(9): 17−23. |
[22] | 张梅, 黄凌云, 蓝卓越, 等. 黄铜矿浮选研究进展[J]. 矿产保护与利用, 2022, 42(2): 172−178. doi: 10.13779/j.cnki.issn1001-0076.2022.02.023 ZHANG M, HUANG L Y, LAN Z Y, et al. Research progress of chalcopyrite flotation[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 172−178. doi: 10.13779/j.cnki.issn1001-0076.2022.02.023 |
[23] | 施帅, 何廷树, 李慧. Ca2+和Mg2+对辉钼矿可浮性的影响对比[J]. 过程工程学报, 2021, 21(2): 153−159. doi: 10.12034/j.issn.1009-606X.220028 SHI S, HE T S, LI H. Comparison of the influence of Ca2+ and Mg2+ on the floatability of molybdenite[J]. Journal of process engineering, 2021, 21(2): 153−159. doi: 10.12034/j.issn.1009-606X.220028 |
[24] | 李慧, 何廷树, 王宇斌, 等. 铁离子对辉钼矿表面性质及可浮性的影响机理研究[J]. 有色金属工程, 2018, 8(1): 89−92+97. doi: 10.3969/j.issn.2095-1744.2018.01.018 LI H, HE T S, WANG Y B, et al. Study on the influence mechanism of iron ions on the surface properties and floatability of molybdenite[J]. Nonferrous Metal Engineering, 2018, 8(1): 89−92+97. doi: 10.3969/j.issn.2095-1744.2018.01.018 |
[25] | 郑利强, 胡秀梅. 某铜锌矿选矿厂混合精矿脱药试验研究[J]. 有色金属(选矿部分), 2006(2): 9−11. ZHENG L Q, HU X M. Experimental study on the dealkylation of mixed concentrate in a copper zinc ore concentrator[J]. Nonferrous Metals (beneficiation), 2006(2): 9−11. |
[26] | 魏守岩. 铜钼混合精矿残余药剂测量及脱药试验研究[J]. 世界有色金属, 2017(14): 254−255. WEI S Y. Study on residual reagent measurement and de reagent test of copper molybdenum mixed concentrate[J]. World Nonferrous Metals, 2017(14): 254−255. |
[27] | 管晓颖. 铜钼矿浮选分离多因素交互影响研究[D]. 北京: 北京有色金属研究总院, 2016. GUAN X Y. Study on the interaction of multiple factors in flotation separation of copper molybdenum ore[D]. Beijing: Beijing Nonferrous Metals Research Institute, 2016. |
[28] | 朱龙刚, 李宇宏. 铜钼分离研究现状与进展[J]. 矿山机械, 2015, 43(11): 16−20. ZHU L G, LI Y H. Research status and progress of copper molybdenum separation[J]. Mining Machinery, 2015, 43(11): 16−20. |
[29] | 孟奇, 崔毅琦, 童雄, 等. 铜钼分离技术现状与趋势[J]. 矿冶, 2014, 23(2): 19−22+39. MENG Q, CUI Y Q, Tong X, et al. Current situation and trend of copper molybdenum separation technology[J]. Mining and Metallurgy, 2014, 23(2): 19−22+39. |
[30] | 黄鹏亮, 杨丙桥, 胡杨甲, 等. 铜钼分离技术研究进展[J]. 有色金属(选矿部分), 2019(5): 50−55+62. HUANG P L, YANG B Q, Hu Y J, et al. Research progress of copper molybdenum separation technology[J]. Nonferrous Metals (beneficiation), 2019(5): 50−55+62. |
[31] | 简胜, 胡岳华, 孙伟. 西藏某低品位铜钼矿选矿工艺[J]. 矿产综合利用, 2019(5): 32−36+16. doi: 10.3969/j.issn.1000-6532.2019.05.007 JIAN S, HU Y H, SUN W. Beneficiation process of a low-grade copper molybdenum ore in Tibet[J]. Comprehensive Utilization of Minerals, 2019(5): 32−36+16. doi: 10.3969/j.issn.1000-6532.2019.05.007 |
[32] | 胡元, 黄建平. 铜钼矿的浮选工艺和浮选药剂研究进展[J]. 云南冶金, 2014, 43(3): 9−12. doi: 10.3969/j.issn.1006-0308.2014.03.003 HU Y, HUANG J P. Research Progress on flotation process and flotation reagent of copper molybdenum ore[J]. Yunnan Metallurgy, 2014, 43(3): 9−12. doi: 10.3969/j.issn.1006-0308.2014.03.003 |
[33] | 代宗, 蒋太国, 方建军, 等. 铜钼混合精矿浮选分离的研究进展[J]. 矿山机械, 2017, 45(4): 1−6. doi: 10.3969/j.issn.1001-3954.2017.04.001 DAI Z, JIANG T G, FANG J J, et al. Research progress in flotation separation of copper molybdenum mixed concentrate[J]. Mining Machinery, 2017, 45(4): 1−6. doi: 10.3969/j.issn.1001-3954.2017.04.001 |
[34] | 杨晓峰, 刘瑶瑶. 铜钼矿浮选研究现状与进展[J]. 矿冶, 2021, 30(6): 42−47. doi: 10.3969/j.issn.1005-7854.2021.06.007 YANG X F, LIU Y Y. Research status and progress of flotation of copper molybdenum ore[J]. Mining and Metallurgy, 2021, 30(6): 42−47. doi: 10.3969/j.issn.1005-7854.2021.06.007 |
[35] | 刘水红. 某低品位铜钼矿石铜钼优先浮选试验[J]. 现代矿业, 2018, 34(10): 94−98. doi: 10.3969/j.issn.1674-6082.2018.10.026 LIU S H. Copper molybdenum preferential flotation test of a low-grade copper molybdenum ore[J]. Modern Mining, 2018, 34(10): 94−98. doi: 10.3969/j.issn.1674-6082.2018.10.026 |
[36] | 林清泉, 戴智飞, 曾令明, 等. 江西某难选铜钼矿浮选试验研究[J]. 矿冶工程, 2022, 42(2): 73−76. doi: 10.3969/j.issn.0253-6099.2022.02.018 LIN Q Q, DAI Z F, ZENG L M, et al. Experimental study on flotation of a refractory copper molybdenum ore in Jiangxi[J]. Mining and Metallurgy Engineering, 2022, 42(2): 73−76. doi: 10.3969/j.issn.0253-6099.2022.02.018 |
[37] | 刘曙光, 彭伟军, 王伟, 等. 氧化预处理技术在铜钼硫化矿浮选分离中的研究进展[J]. 矿产保护与利用, 2022, 42(1): 34−44. LIU S G, PENG W J, WANG W, et al. Research progress of oxidation pretreatment technology in flotation separation of copper molybdenum sulfide ore[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 34−44. |
[38] | 黄鹏亮, 杨丙桥, 胡杨甲, 等. 氧化预处理对铜钼浮选分离效果的影响[J]. 矿冶工程, 2021, 41(3): 46−50+56. doi: 10.3969/j.issn.0253-6099.2021.03.011 HUANG P L, YANG B Q, HU Y J, et al. Effect of oxidation pretreatment on flotation separation of copper and molybdenum[J]. Mining and Metallurgy Engineering, 2021, 41(3): 46−50+56. doi: 10.3969/j.issn.0253-6099.2021.03.011 |
[39] | HIRAJIMA T, MORI M, ICHIKAWA O, et al. Selective flotation of chalcopyrite and molybdenite with plasma pre-treatment[J]. Minerals Engineering, 2014, 66: 102−111. |
[40] | POORKANI M S. Banisi Industrial use of nitrogen in flotation of molybdenite at the Sarcheshmeh copper complex[J]. Minerals Engineering, 2005, 18: 735−738. doi: 10.1016/j.mineng.2004.10.013 |
[41] | 赵援. 铜钼分离充氮浮选[J]. 云南冶金, 1981(4): 66. ZHAO Y. Copper-molybdenum separation of nitrogen filling flotation[J]. Yunnan Metallurgy, 1981(4): 66. |
[42] | 宋坤, 宋永胜, 张其东, 等. 外控电位法浮选分离黄铜矿和辉钼矿[J]. 工程科学学报, 2019, 41(7): 857−863. SONG K, SONG Y S, ZHANG Q D, et al. Flotation separation of chalcopyrite and molybdenite by externally controlled potential method[J]. Journal of Engineering Science, 2019, 41(7): 857−863. |
[43] | 黄真瑞, 钟宏, 王帅, 等. 黄铜矿浮选工艺及捕收剂研究进展[J]. 应用化工, 2013, 42(11): 2048−2051+2055. HUANG Z R, ZHONG H, WANG S, et al. Research progress of chalcopyrite flotation process and collector[J]. Applied Chemical Industry, 2013, 42(11): 2048−2051+2055. |
[44] | 李尧, 文书明, 丰奇成, 等. 铜钼混合精矿浮选分离技术研究进展[J]. 金属矿山, 2018(7): 13−18. LI Y, WEN S M, FENG Q C, et al. Research progress on flotation separation technology of copper molybdenum mixed concentrate[J]. Metal Mines, 2018(7): 13−18. |
[45] | BU X Z, FENG Y Y, XUE J W, et al. Effective recovery of chalcopyrite at low temperatures using modified ester collector[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(1): 296−306. doi: 10.1016/S1003-6326(22)65795-9 |
[46] | 胡晓蓉, 罗雅婧, 陈建华, 等. N, O, S取代2-巯基苯基黄铜矿捕收剂性质影响的第一性原理研究[J]. 矿产保护与利用, 2022, 42(1): 45−51. HU X R, LUO Y J, CHEN J H, et al. First principles study on the effect of N, O, S substituted 2-Mercaptophenyl chalcopyrite collector properties[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 45−51. |
[47] | ZHANG Z Y, WANG Y M, LIU G Y, et al. Separation of chalcopyrite from galena with 3-amyl-4-amino-1, 2, 4-triazole-5-thione collector: Flotation behavior and mechanism[J]. Journal of Industrial and Engineering Chemistry, 2020, 92(prepublish): 210−217. |
[48] | 迟晓鹏, 郭芸杉, 衷水平, 等. 邻丁基S-(1-氯乙基)二硫代碳酸酯捕收剂在黄铜矿和黄铁矿浮选分离中的作用及机理[J]. 中国有色金属学报, 2021, 31(5): 1369−1376. doi: 10.11817/j.ysxb.1004.0609.2021-36568 CHI X P, GUO Y S, ZHONG S P, et al. Function and mechanism of o-butyl s- (1-chloroethyl) dithiocarbonate collector in flotation separation of chalcopyrite and pyrite[J]. Chinese Journal of Nonferrous Metals, 2021, 31(5): 1369−1376. doi: 10.11817/j.ysxb.1004.0609.2021-36568 |
[49] | 陈丽娟, 李治杭, 姚辉, 等. 辉钼矿浮选药剂研究进展[J]. 现代矿业, 2022, 38(2): 19−23+27. doi: 10.3969/j.issn.1674-6082.2022.02.007 CHEN L J, LI Z H, YAO H, et al. Research progress of molybdenite flotation reagents[J]. Modern Mining, 2022, 38(2): 19−23+27. doi: 10.3969/j.issn.1674-6082.2022.02.007 |
[50] | 宛鹤, 何廷树, 杨剑波, 等. 辉钼矿捕收剂的应用现状和发展趋势[J]. 矿山机械, 2016, 44(12): 1−6. WAN H, HE T S, YANG J B, et al. Application status and development trend of Molybdenite collector[J]. Mining Machinery, 2016, 44(12): 1−6. |
[51] | 曹亮, 李来平, 杨健, 等. TY系列捕收剂浮选辉钼矿应用研究[J]. 中国钼业, 2016, 40(4): 10−13. doi: 10.13384/j.cnki.cmi.1006-2602.2016.04.003 CAO L, LI L P, YANG J, et al. Study on the application of ty series collectors in the flotation of molybdenite[J]. China Molybdenum Industry, 2016, 40(4): 10−13. doi: 10.13384/j.cnki.cmi.1006-2602.2016.04.003 |
[52] | 王越. 新型钼捕收剂JJ-4#在斑岩型铜钼矿的试验研究与应用[J]. 矿冶, 2017, 26(1): 24−28. doi: 10.3969/j.issn.1005-7854.2017.01.006 WANG Y. Application and research of new molybdenum collector JJ-4# in a porphyry copper mine[J]. Mining and Metallurgy, 2017, 26(1): 24−28. doi: 10.3969/j.issn.1005-7854.2017.01.006 |
[53] | 谢小燕, 邱显扬, 罗传胜, 等. 辉钼矿可浮选性及其捕收剂的研究进展[J]. 中国钼业, 2013, 37(5): 29−32. doi: 10.3969/j.issn.1006-2602.2013.05.006 XIE X Y, QIU X Y, LUO C S, et al. Research Progress on floatability of molybdenite and its collector[J]. China Molybdenum Industry, 2013, 37(5): 29−32. doi: 10.3969/j.issn.1006-2602.2013.05.006 |
[54] | 吴双桥. 某低品位难选斑岩型铜钼矿铜钼分离研究[D]. 赣州: 江西理工大学, 2011. WU S Q. Research on copper-molybdenum separation of low grade porphyry copper-molybdenum ore[D]. Ganzhou: Jiangxi University of Science and Technology, 2011. |
[55] | SARQUIS P E, MENENDEZ A J M, Mahamud M M, et al. Tannins: the organic depressants alternative in selective flotation of sulfides[J]. Journal of Cleaner Production, 2014, 84: 723−726. doi: 10.1016/j.jclepro.2014.08.025 |
[56] | LI M Y, WEI D Z, Liu Q, et al. Flotation separation of copper-molybdenum sulfides using chitosan as a selective depressant[J]. Minerals Engineering, 2015, 83: 217−222. doi: 10.1016/j.mineng.2015.09.013 |
[57] | 铜钼混合精矿分离的药剂及方法[J]. 中国钼业, 2019, 43(3): 57. Reagents and methods for separation of Cu Mo mixed concentrate[J]. China Molybdenum Industry, 2019, 43 (3): 57. |
[58] | 符剑刚, 钟宏, 欧乐明. 巯基乙酸在铜钼分离中的应用[J]. 矿产保护与利用, 2002(6): 38−41. doi: 10.3969/j.issn.1001-0076.2002.06.010 FU J G, ZHONG H, OU L M. Application of mercaptoacetic acid in the separation of copper and molybdenum[J]. Mineral Protection and Utilization, 2002(6): 38−41. doi: 10.3969/j.issn.1001-0076.2002.06.010 |
[59] | 卢红梅, 钟宏. 氧肟酸型淀粉合成的工艺条件实验研究[J]. 轻金属, 2002(6): 23−26. doi: 10.3969/j.issn.1002-1752.2002.06.007 LU H M, ZHONG H. Experimental study on the synthesis of hydroxamic acid starch[J]. Light Metal, 2002(6): 23−26. doi: 10.3969/j.issn.1002-1752.2002.06.007 |
[60] | 陈代雄,杨建文,李晓东,等. 一种硫化铜钼混合精矿浮选分离的方法: CN103128004A[P].2013-06-05. CHEN D X, YANG J W, LI X D, et al. A flotation separation method for copper molybdenum sulfide mixed concentrate: CN103128004A[P]. 2013-06-05. |
[61] | 董艳红. 某低品位铜钼矿浮选及分离试验研究[J]. 中国钼业, 2017, 41(4): 10−16. DONG Y H. Experimental study on flotation and separation of a low-grade copper molybdenum ore[J]. China Molybdenum Industry, 2017, 41(4): 10−16. |
[62] | YIN Z J, SUN W, HU Y H, et al. Depressing behaviors and mechanism of disodium bis (carboxymethyl) trithiocarbonate on separation of chalcopyrite and molybdenite[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(4): 883−890. doi: 10.1016/S1003-6326(17)60100-6 |
[63] | 吴桂叶, 徐连华, 王金玲, 等. 某铜钼混合精矿分离铜抑制剂筛选[J]. 金属矿山, 2015(1): 50−53. WU G Y, XU L H, WANG J L, et al. Screening of Copper Inhibitors for separation of a copper molybdenum mixed concentrate[J]. Metal mine, 2015(1): 50−53. |
[64] | 王志平, 王金玲, 吴桂叶, 等. 新型铜抑制剂BK511用于某矿铜钼分离浮选的试验研究[J]. 有色金属工程, 2015, 5(1): 46−48+57. doi: 10.3969/j.issn.2095-1744.2015.01.011 WANG Z P, WANG J L, WU G Y, et al. Experimental study on the separation and flotation of copper and molybdenum with a new copper inhibitor BK511[J]. Nonferrous Metals Engineering, 2015, 5(1): 46−48+57. doi: 10.3969/j.issn.2095-1744.2015.01.011 |
[65] | 郭琳. 焦性没食子酸对硫化矿物的抑制性能和作用机理[J]. 广西大学学报(自然科学版), 2002(2): 184−186. GUO L. Inhibition and mechanism of pyrogallic acid on sulfide minerals[J]. Journal of Guangxi University (Natural Science Edition), 2002(2): 184−186. |
[66] | YANG B Q, YAN H, ZENG M Y, et al. Tiopronin as a novel copper depressant for the selective flotation separation of chalcopyrite and molybdenite[J]. Separation and Purification Technology, 2021, 266: 118576. doi: 10.1016/j.seppur.2021.118576 |
[67] | WANG X, ZHAO B, LIU J, et al. Dithiouracil, a highly efficient depressant for the selective separation of molybdenite from chalcopyrite by flotation: Applications and mechanism[J]. Minerals Engineering, 2022, 175: 107287. doi: 10.1016/j.mineng.2021.107287 |
[68] | TIMBILLAH S, FOSU B, Lan P L, et al. Towards an Understanding of the Use of Disodium Carboxymethyl Trithiocarbonate (DCMT) as an Alternative Depressant in Cu/Mo Sulfide Flotation[J]. Mining, Metallurgy & Exploration, 2021, 38(3): 1−14. |
[69] | TIMBILLAH S, YOUNG C, DAS A. A fundamental study of disodium carboxymethyl trithiocarbonate (Orfom® D8) in flotation separation of copper-molybdenum sulfides[C]. Extraction 2018. The Minerals, Metals & Materials Series. Springer, Cham, 2018: 2927-2945. |
Crystal structure of molybdenite (2H polytype): (a) Top view; (b) Side view
(a) crystal structure of chalcopyrite; (b) top view of chalcopyrite crystal structure
Molecular structure of disodium bis(carboxymethyl) trithiocarbonate [62]
Structures of the repeating units of chitosan[56]
Molecular structure of pyrogallic acid[65]
The proposed adsorption model of tiopronin on chalcopyrite surface[66]
The suggested adsorption model of dithiouracil on chalcopyrite surface[67]
Disodium carboxymethyl trithiocarbonate structure[69]