Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 5
Article Contents

YANG Chunyuan, WANG Jiawei, WANG Song, YANG Pan, HE Yue, WANG Haifeng. Reductive Leaching of Manganese from Certain Low-grade Pyrolusite with Tannic Acid and Acetic Acid[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 119-125. doi: 10.13779/j.cnki.issn1001−0076.2022.05.014
Citation: YANG Chunyuan, WANG Jiawei, WANG Song, YANG Pan, HE Yue, WANG Haifeng. Reductive Leaching of Manganese from Certain Low-grade Pyrolusite with Tannic Acid and Acetic Acid[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 119-125. doi: 10.13779/j.cnki.issn1001−0076.2022.05.014

Reductive Leaching of Manganese from Certain Low-grade Pyrolusite with Tannic Acid and Acetic Acid

More Information
  • Corresponding author: WANG Haifeng
  • To rationally develop and utilize the procession of certain low-grade pyrolusite, the combination of more environmentally friendly and naturally macromolecular tannic acid, and acetic acid as a new composite green leaching agent was first investigated and applied in this experiment. It provides another sustainable and safe practice innovation for manganese leaching. The effects of acetic acid concentration, tannic acid concentration, liquid-solid ratio, reaction temperature, and reaction time on manganese leaching rate were studied through the single factor test and orthogonal test. The results showed that the main factors affecting manganese leaching rate were tannic acid concentration, acetic acid concentration, liquid-solid ratio, reaction time, and reaction temperature. Under the optimal process conditions (acetic acid concentration of 3.5 mol/L, tannic acid concentration of 25 g/L, liquid-solid ratio of 9 mL/g, reaction temperature of 85 ℃, and reaction time of 2.5 h), the leaching rate of manganese from pyrolusite could reach 97.26%.

  • 加载中
  • [1] 蔡启果, 王海峰, 王家伟, 等. 硫酸锰液制取四氧化三锰的工艺条件研究[J]. 金属矿山, 2018, 503(5): 80−83.

    Google Scholar

    CAI Q G, WANG H F, WANG J W, et al. Study on technological conditions for preparation of manganese oxide from manganese sulfate solution[J]. Metal Mine, 2018, 503(5): 80−83.

    Google Scholar

    [2] 高艺, 刘宏杰. 锰矿资源现状及潜力预测[J]. 中国锰业, 2020, 38(2): 1−5.

    Google Scholar

    GAO Y, LIU H J. A current situation of manganese resources and its technical research progress[J]. China' s Manganese Industry, 2020, 38(2): 1−5.

    Google Scholar

    [3] 滕飞, 罗绍华, 康雪, 等. 原位硫酸焙烧浸出低品位软锰矿及元素分离[J]. 中国冶金, 2021, 31(5): 72−77.

    Google Scholar

    [4] 刘陟娜, 许虹, 王秋舒, 等. 中国锰矿供需现状及可持续发展建议[J]. 资源与产业, 2015, 17(6): 38−43.

    Google Scholar

    LIU Z N, XU H, WANG Q S, et al. China's manganese supply-demand actuality and its sustainable development[J]. Resources and Industries, 2015, 17(6): 38−43.

    Google Scholar

    [5] 林顺达, 李康强, 李鑫培, 等. 软锰矿还原技术研究现状[J]. 湿法冶金, 2019, 38(6): 432−437.

    Google Scholar

    LIN S D, Li K Q, Li X P, et al. Research status on reduction technology of pyrolusite[J]. Hydrometallurgy of China, 2019, 38(6): 432−437.

    Google Scholar

    [6] 石林, 卢友志, 李赞超. 预酸解桉木渣浸出低品位软锰矿的试验[J]. 化工管理, 2021(31): 13−14.

    Google Scholar

    SHI L, LU Y Z, Li Z C. Experiments on the leaching of low grade pyrolusite with acidolysis eucalyptus robusta residue[J]. Chemical Enterprise Management, 2021(31): 13−14.

    Google Scholar

    [7] LIN S, LI K, YANG Y, et al. Microwave-assisted method investigation for the selective and enhanced leaching of manganese from low-grade pyrolusite using pyrite as the reducing agent[J]. Chemical Engineering and Processing-Process Intensification, 2021, 159: 108209. doi: 10.1016/j.cep.2020.108209

    CrossRef Google Scholar

    [8] 明宪权, 卢友志, 陈南雄, 等. 甲酸-盐酸还原浸出低品位软锰矿[J]. 湿法冶金, 2015, 34(1): 21−24.

    Google Scholar

    MING X Q, LU Y Z, CHEN N X, et al. Reduction leaching of manganese from low-grade pyrolusite using formic acid-hydrochloric acid[J]. Hydrometallurgy of China, 2015, 34(1): 21−24.

    Google Scholar

    [9] 明宪权, 卢友志, 陈南雄, 等. 硝酸溶液中甲酸还原浸取低品位软锰矿[J]. 矿业研究与开发, 2015, 35(8): 31-33.

    Google Scholar

    MING X Q, LU Y Z, CHEN N X, et al. Leaching of low-grade pyrolusite with formic acid as reductant in nitric acid solution[J]. Mining Research and Development, 2015, 35(8): 31-33.

    Google Scholar

    [10] Lie J, Liu J C. Closed-vessel microwave leaching of valuable metals from spent lithium-ion batteries (LIBs) using dual-function leaching agent: Ascorbic acid[J]. Separation and Purification Technology, 2021, 266: 118458. doi: 10.1016/j.seppur.2021.118458

    CrossRef Google Scholar

    [11] Refly S, Floweri O, Mayangsari T R, et al. Green recycle processing of cathode active material from LiNi1/3Co1/3Mn1/3O2 (NCM 111) battery waste through citric acid leaching and oxalate co-precipitation process[J]. Materials Today: Proceedings, 2021, 44: 3378−3380. doi: 10.1016/j.matpr.2020.11.664

    CrossRef Google Scholar

    [12] 孙维义, 丁桑岚, 苏仕军, 等. 二氧化硫液相浸取低品位软锰矿的动力学[J]. 四川大学学报(工程科学版), 2011, 43(S1): 199−203.

    Google Scholar

    SUN W Y, DING S L, SU S J, et al. Leaching kinettics of Mn from low grade pyrolusite with SO2 in liquid phase[J]. Journal of Sichuan University (Engineering Science Edition), 2011, 43(S1): 199−203.

    Google Scholar

    [13] 崔益顺, 向云刚. 硫酸亚铁还原硫酸浸取软锰矿动力学研究[J]. 无机盐工业, 2015, 47(1): 26−29.

    Google Scholar

    CUI Y S, XIANG Y G. Study on sulfuric acid leaching kinetics of pyrolusite with ferrous sulfate as reducing agent[J]. Inorganic Chemicals Industry, 2015, 47(1): 26−29.

    Google Scholar

    [14] 高昭伟, 王海峰, 王家伟, 等. 以稻草为还原剂硫酸浸出软锰矿动力学研究[J]. 矿冶工程, 2018, 38(4): 83−86. doi: 10.3969/j.issn.0253-6099.2018.04.021

    CrossRef Google Scholar

    GAO Z W, WANG H F, WANG J W, et al. Kinetics of sulfuric acid leaching of pyrolusite with straw as a reducing agent[J]. Mining and Metallurgical Engineering, 2018, 38(4): 83−86. doi: 10.3969/j.issn.0253-6099.2018.04.021

    CrossRef Google Scholar

    [15] MUTHALIB N, ISMAIL S, ABDULLAH N S, et al. Reductive leaching of low-grade manganese ore with bamboo sawdust: Study of bamboo sawdust and glucose degradation[J]. Arabian Journal of Chemistry, 2021, 14(8): 103288. doi: 10.1016/j.arabjc.2021.103288

    CrossRef Google Scholar

    [16] 周灵灵. 软锰矿醛基类有机物还原酸浸的实验研究[D]. 贵阳: 贵州大学, 2016.

    Google Scholar

    ZHOU L L. Study on pyrolusite aldehyde acid leaching of organic matter reduction[D]. Guiyang: Guizhou University, 2016.

    Google Scholar

    [17] 马志红, 陆忠兵, 石碧. 单宁酸的化学性质及应用[J]. 天然产物研究与开发, 2003(1): 87−91. doi: 10.3969/j.issn.1001-6880.2003.01.023

    CrossRef Google Scholar

    MA Z H, LU Z B, SHI B. Chemical properties and application of tanninc acid[J]. Natural Product Research and Development, 2003(1): 87−91. doi: 10.3969/j.issn.1001-6880.2003.01.023

    CrossRef Google Scholar

    [18] LAMEI E, HASANZADEH M. Fabrication of chitosan nanofibrous scaffolds based on tannic acid and metal-organic frameworks for hemostatic wound dressing applications.[J]. International Journal of Biological Macromolecules, 2022, 208: 409−420. doi: 10.1016/j.ijbiomac.2022.03.117

    CrossRef Google Scholar

    [19] LUO H H, LIU Y, RUJ B, et al. Preparation of degradable castor oil-based waterborne polyurethane with tannic acid as crosslinking agent and its application on leather surface coating[J]. International Journal of Polymer Analysis and Characterization, 2022, 27(1): 52−70. doi: 10.1080/1023666X.2021.2006906

    CrossRef Google Scholar

    [20] 郁蕉竹, 刘瀛, 许文雅, 等. 疏松型印染废水分离复合纳滤膜的性能研究[J]. 辽宁化工, 2022, 51(3): 297−299. doi: 10.3969/j.issn.1004-0935.2022.03.001

    CrossRef Google Scholar

    YU J Z, LIU Y, XU W Y, et al. Study on the performance of loose composite nanofiltration membrane for separation of printing and dyeing wastewater[J]. Liaoning Chemical Industry, 2022, 51(3): 297−299. doi: 10.3969/j.issn.1004-0935.2022.03.001

    CrossRef Google Scholar

    [21] PRASETYO E, MURYANTA W A, ANGGRAINI A G, et al. Tannic acid as a novel and green leaching reagent for cobalt and lithium recycling from spent lithium-ion batteries[J]. Journal of Material Cycles and Waste Management, 2022, 24(3): 927−938. doi: 10.1007/s10163-022-01368-y

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(3)

Article Metrics

Article views(7) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint