Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 5
Article Contents

FU Minsheng, CHEN Linxiong, LI Caiyun, XU Jiang, CHAI Dong, LI Yuqiong. Density Functional Theory Study on Crystal Structure and Properties of Arsenic-bearing Pyrite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 112-118. doi: 10.13779/j.cnki.issn1001−0076.2022.05.013
Citation: FU Minsheng, CHEN Linxiong, LI Caiyun, XU Jiang, CHAI Dong, LI Yuqiong. Density Functional Theory Study on Crystal Structure and Properties of Arsenic-bearing Pyrite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 112-118. doi: 10.13779/j.cnki.issn1001−0076.2022.05.013

Density Functional Theory Study on Crystal Structure and Properties of Arsenic-bearing Pyrite

More Information
  • The occurrence mechanism of arsenic (As) impurity in pyrite (FeS2) and its effect on the crystal structure and properties of pyrite were calculated by density functional theory (DFT) plane-wave pseudopotential method. The results showed that arsenic bearing pyrite was formed by As substitution for S. The incorporation of As would reduce the band gap and slightly increaseed the lattice parameters of pyrite. In arsenic bearing pyrite, As atom was positively charged. In addition, the incorporation of As element would affect the charge distribution of surrounding atoms and the strength of bond covalency between atoms. S and Fe atoms obtained electrons, and the covalency of As—S bond was stronger than that of S—S bond, while the As—Fe bond was anti-bonding. Through the density of states (DOS) analysis, It was found that As 4p orbital interacted with S 3p orbital and Fe 3d orbital.

  • 加载中
  • [1] 杨婷婷, 柏耀辉, 梁金松, 等. 微生物对砷的氧化还原竞争[J]. 环境科学, 2016, 37(2): 609−614.

    Google Scholar

    YANG T T, BAI Y H, LIANG J S, et al. Competitive microbial oxidation and reduction of arsenic[J]. Environmental science, 2016, 37(2): 609−614.

    Google Scholar

    [2] 陈懋弘, 毛景文, 陈振宇, 等. 滇黔桂“金三角”卡林型金矿含砷黄铁矿和毒砂的矿物学研究[J]. 矿床地质, 2009, 28(5): 539−557.

    Google Scholar

    CEHN M H, MAO J W, CHEN Z Y, et al. Mineralogy of arsenian pyrites and arsenopyrites of Carlin-type gold deposits in Yunnan-Guizhou-Guangxi “golden triangle” area,southwestern China[J]. Mineral Deposits, 2009, 28(5): 539−557.

    Google Scholar

    [3] 邹明亮, 黄宏业, 刘鑫扬, 等. 华南诸广岩体中段含砷黄铁矿特征及其与铀成矿关系[J]. 地质论评, 2017, 63(4): 1021−1039.

    Google Scholar

    ZOU M L, HUANG H Y, LIU X Y, et al. Characteristics of arsenic bearing pyrite in the middle section of Zhuguang rock body in South China and its relationship with uranium mineralization[J]. Geological Review, 2017, 63(4): 1021−1039.

    Google Scholar

    [4] BLACHARD M, ALFREDSSON M, BRODHOLT J, et al. Arsenic incorporation into FeS2 pyrite and its influence on dissolution:A DFT study[J]. Geochimica Et Cosmochimica Acta, 2006, 71(3): 624−630.

    Google Scholar

    [5] DEDITIUS A P, UTSUNOMIYA S, RENOCK D, et al. A proposed new type of arsenian pyrite:Composition,nanostructure and geological significance[J]. Geochimica et Cosmochimica Acta, 2008, 72(12): 2919−2933. doi: 10.1016/j.gca.2008.03.014

    CrossRef Google Scholar

    [6] 高天宇.含砷黄铁矿对As(Ⅲ, Ⅴ)的吸附与氧化还原行为的研究[D]. 武汉:华中农业大学, 2017.

    Google Scholar

    GAO T Y. Adsorption and redox behavior of arsenic bearing pyrite on As[D]. WuHan: Huazhong Agricultural University, 2017.

    Google Scholar

    [7] EDELBRO R, SANDSTROM A, PAUL J. Full potential calculations on the electron bandstructures of Sphalerite,Pyrite and Chalcopyrite[J]. Applied Surface Science, 2003, 206(1/2/3/4): 300−313.

    Google Scholar

    [8] OERTZEN G U, JONES R T, GERSON A R. Electronic and optical properties of Fe,Zn and Pb sulfides[J]. Physics and Chemistry of Minerals, 2005, 32(4): 255−268. doi: 10.1007/s00269-005-0464-9

    CrossRef Google Scholar

    [9] WOMES M, KARNATAK R C, ESTEVA J M, et al. Electronic structures of FeS and FeS2:X-rayabsorption spectroscopy and band structure calculations[J]. Journal of Physics and Chemistry of Solids, 1997, 58(2): 345−352. doi: 10.1016/S0022-3697(96)00068-6

    CrossRef Google Scholar

    [10] OERTZEN G U, SKINNER W M, NESBITT H W. Ab initio and x-ray photoemission spectroscopy study of the bulk and surface electronic structure of pyrite (100) with implications for reactivity[J]. Physical Review B, 2005, 72(23): 235427. doi: 10.1103/PhysRevB.72.235427

    CrossRef Google Scholar

    [11] OPAHLE I, KOEPERNIK K, ESCHRIG H. Full potential band structure calculation of iron pyrite[J]. Computational Materials Science, 2000, 17(2/3/4): 206−210.

    Google Scholar

    [12] 李玉琼, 陈建华, 陈晔. 空位缺陷黄铁矿的电子结构及其浮选行为[J]. 物理化学学报, 2010, 26(5): 1435−1441.

    Google Scholar

    LI Y Q, CHEN J H, CHEN Y. Electronic Structures and Flotation Behavior of Pyrite Containing Vacancy Defects[J]. Acta Physico-Chimica Sinica, 2010, 26(5): 1435−1441.

    Google Scholar

    [13] 李玉琼, 陈建华, 陈晔, 等. 黄铁矿(100)表面性质的密度泛函理论计算及其对浮选的影响[J]. 中国有色金属学报, 2011, 21(4): 919−926.

    Google Scholar

    LI Y Q, CHEN J H, CHEN Y, et al. Density functional theory calculation of surface properties of pyrite and its influence on flotation[J]. Chinese Journal of Nonferrous Metals, 2011, 21(4): 919−926.

    Google Scholar

    [14] 陈建华, 王檑, 陈晔, 等. 空位缺陷对方铅矿电子结构及浮选行为影响的密度泛函理论[J]. 中国有色金属学报, 2010, 20(9): 1815−1821.

    Google Scholar

    CHEN J H, WANG L, CHEN Y, et al. Density functional theory of effects of vacancy defects on electronic structure and flotation of galena[J]. Chinese Journal of Nonferrous Metals, 2010, 20(9): 1815−1821.

    Google Scholar

    [15] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift fure Kristallographie, 2005, 220(5/6): 567−570.

    Google Scholar

    [16] SEGALL M D, LINDAN P J D, PRONBERT M J, et al. First-principles simulation:ideas,illustrations and the CASTEP code[J]. Journal of Physics:Condensed Matter, 2002, 14(11): 2717−2744. doi: 10.1088/0953-8984/14/11/301

    CrossRef Google Scholar

    [17] 谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社, 1998: 1-26.

    Google Scholar

    XIE X D, LU D. Energy band theory of solids[M]. Shanghai: Fudan University Press, 1998: 1-26.

    Google Scholar

    [18] MARZARI N, VANDERBILT D, PAYNE M C. Ensemble density-functional theory for ab-initio molecular dynamics of metals and finite-temperature insulators[J]. Physical Review Letters, 1997, 79(7): 1337−1340. doi: 10.1103/PhysRevLett.79.1337

    CrossRef Google Scholar

    [19] JONES R O, GUNNARSSON O. The density functional formalism,its applications and prospects[J]. Reviews of Modern Physics, 1989, 61(3): 689−746. doi: 10.1103/RevModPhys.61.689

    CrossRef Google Scholar

    [20] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): 1133−1138. doi: 10.1103/PhysRev.140.A1133

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(5)

Article Metrics

Article views(31) PDF downloads(2) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint