Citation: | FU Minsheng, CHEN Linxiong, LI Caiyun, XU Jiang, CHAI Dong, LI Yuqiong. Density Functional Theory Study on Crystal Structure and Properties of Arsenic-bearing Pyrite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 112-118. doi: 10.13779/j.cnki.issn1001−0076.2022.05.013 |
The occurrence mechanism of arsenic (As) impurity in pyrite (FeS2) and its effect on the crystal structure and properties of pyrite were calculated by density functional theory (DFT) plane-wave pseudopotential method. The results showed that arsenic bearing pyrite was formed by As substitution for S. The incorporation of As would reduce the band gap and slightly increaseed the lattice parameters of pyrite. In arsenic bearing pyrite, As atom was positively charged. In addition, the incorporation of As element would affect the charge distribution of surrounding atoms and the strength of bond covalency between atoms. S and Fe atoms obtained electrons, and the covalency of As—S bond was stronger than that of S—S bond, while the As—Fe bond was anti-bonding. Through the density of states (DOS) analysis, It was found that As 4p orbital interacted with S 3p orbital and Fe 3d orbital.
[1] | 杨婷婷, 柏耀辉, 梁金松, 等. 微生物对砷的氧化还原竞争[J]. 环境科学, 2016, 37(2): 609−614. YANG T T, BAI Y H, LIANG J S, et al. Competitive microbial oxidation and reduction of arsenic[J]. Environmental science, 2016, 37(2): 609−614. |
[2] | 陈懋弘, 毛景文, 陈振宇, 等. 滇黔桂“金三角”卡林型金矿含砷黄铁矿和毒砂的矿物学研究[J]. 矿床地质, 2009, 28(5): 539−557. CEHN M H, MAO J W, CHEN Z Y, et al. Mineralogy of arsenian pyrites and arsenopyrites of Carlin-type gold deposits in Yunnan-Guizhou-Guangxi “golden triangle” area,southwestern China[J]. Mineral Deposits, 2009, 28(5): 539−557. |
[3] | 邹明亮, 黄宏业, 刘鑫扬, 等. 华南诸广岩体中段含砷黄铁矿特征及其与铀成矿关系[J]. 地质论评, 2017, 63(4): 1021−1039. ZOU M L, HUANG H Y, LIU X Y, et al. Characteristics of arsenic bearing pyrite in the middle section of Zhuguang rock body in South China and its relationship with uranium mineralization[J]. Geological Review, 2017, 63(4): 1021−1039. |
[4] | BLACHARD M, ALFREDSSON M, BRODHOLT J, et al. Arsenic incorporation into FeS2 pyrite and its influence on dissolution:A DFT study[J]. Geochimica Et Cosmochimica Acta, 2006, 71(3): 624−630. |
[5] | DEDITIUS A P, UTSUNOMIYA S, RENOCK D, et al. A proposed new type of arsenian pyrite:Composition,nanostructure and geological significance[J]. Geochimica et Cosmochimica Acta, 2008, 72(12): 2919−2933. doi: 10.1016/j.gca.2008.03.014 |
[6] | 高天宇.含砷黄铁矿对As(Ⅲ, Ⅴ)的吸附与氧化还原行为的研究[D]. 武汉:华中农业大学, 2017. GAO T Y. Adsorption and redox behavior of arsenic bearing pyrite on As[D]. WuHan: Huazhong Agricultural University, 2017. |
[7] | EDELBRO R, SANDSTROM A, PAUL J. Full potential calculations on the electron bandstructures of Sphalerite,Pyrite and Chalcopyrite[J]. Applied Surface Science, 2003, 206(1/2/3/4): 300−313. |
[8] | OERTZEN G U, JONES R T, GERSON A R. Electronic and optical properties of Fe,Zn and Pb sulfides[J]. Physics and Chemistry of Minerals, 2005, 32(4): 255−268. doi: 10.1007/s00269-005-0464-9 |
[9] | WOMES M, KARNATAK R C, ESTEVA J M, et al. Electronic structures of FeS and FeS2:X-rayabsorption spectroscopy and band structure calculations[J]. Journal of Physics and Chemistry of Solids, 1997, 58(2): 345−352. doi: 10.1016/S0022-3697(96)00068-6 |
[10] | OERTZEN G U, SKINNER W M, NESBITT H W. Ab initio and x-ray photoemission spectroscopy study of the bulk and surface electronic structure of pyrite (100) with implications for reactivity[J]. Physical Review B, 2005, 72(23): 235427. doi: 10.1103/PhysRevB.72.235427 |
[11] | OPAHLE I, KOEPERNIK K, ESCHRIG H. Full potential band structure calculation of iron pyrite[J]. Computational Materials Science, 2000, 17(2/3/4): 206−210. |
[12] | 李玉琼, 陈建华, 陈晔. 空位缺陷黄铁矿的电子结构及其浮选行为[J]. 物理化学学报, 2010, 26(5): 1435−1441. LI Y Q, CHEN J H, CHEN Y. Electronic Structures and Flotation Behavior of Pyrite Containing Vacancy Defects[J]. Acta Physico-Chimica Sinica, 2010, 26(5): 1435−1441. |
[13] | 李玉琼, 陈建华, 陈晔, 等. 黄铁矿(100)表面性质的密度泛函理论计算及其对浮选的影响[J]. 中国有色金属学报, 2011, 21(4): 919−926. LI Y Q, CHEN J H, CHEN Y, et al. Density functional theory calculation of surface properties of pyrite and its influence on flotation[J]. Chinese Journal of Nonferrous Metals, 2011, 21(4): 919−926. |
[14] | 陈建华, 王檑, 陈晔, 等. 空位缺陷对方铅矿电子结构及浮选行为影响的密度泛函理论[J]. 中国有色金属学报, 2010, 20(9): 1815−1821. CHEN J H, WANG L, CHEN Y, et al. Density functional theory of effects of vacancy defects on electronic structure and flotation of galena[J]. Chinese Journal of Nonferrous Metals, 2010, 20(9): 1815−1821. |
[15] | CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift fure Kristallographie, 2005, 220(5/6): 567−570. |
[16] | SEGALL M D, LINDAN P J D, PRONBERT M J, et al. First-principles simulation:ideas,illustrations and the CASTEP code[J]. Journal of Physics:Condensed Matter, 2002, 14(11): 2717−2744. doi: 10.1088/0953-8984/14/11/301 |
[17] | 谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社, 1998: 1-26. XIE X D, LU D. Energy band theory of solids[M]. Shanghai: Fudan University Press, 1998: 1-26. |
[18] | MARZARI N, VANDERBILT D, PAYNE M C. Ensemble density-functional theory for ab-initio molecular dynamics of metals and finite-temperature insulators[J]. Physical Review Letters, 1997, 79(7): 1337−1340. doi: 10.1103/PhysRevLett.79.1337 |
[19] | JONES R O, GUNNARSSON O. The density functional formalism,its applications and prospects[J]. Reviews of Modern Physics, 1989, 61(3): 689−746. doi: 10.1103/RevModPhys.61.689 |
[20] | KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): 1133−1138. doi: 10.1103/PhysRev.140.A1133 |
The relationship between cut-off energy and energy
Ideal pyrite bulk unit cell (a) and supercell (2×2×2, b)
The arsenic bearing pyrite bulk phase (2×2×2) supercell model with different doping concentration
Energy band structure and density of states of ideal pyrite and three doping concentrations
Structural model of bonding between ideal pyrite and arsenopyrite
Density of states distribution of atoms before and after doping