Citation: | LIU Hongzhao, LIU Lin, WANG Wei, CAO Yaohua, WANG Hongliang, CAO Fei. Leaching Properties of Feldspar Associated with a Granite-pegmatite Type Quartz Mine[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 35-42. doi: 10.13779/j.cnki.issn1001−0076.2022.05.006 |
The feldspar was one of the major impurity mineral in purification process of high purity quartz. In this article the feldspar which was separated and enriched from a granitic pegmatite quartz ore was selected as research object. A serial of comparative studies on leaching effect of the feldspar or roasting product with different treatment process including conventional roasting, chloridizing roasting, one-step leaching and three-stage leaching were conducted. Finally, the roasted product and leaching residue were characterized by XRD and SEM for finding out the mineral transformation characteristics of the feldspar in different treatment process. Leaching results showed that the maximum weight loss rate of 70.27% which means the optimal leaching effect was obtained, when the process that the feldspar roasted in chlorine gas atmosphere at 1130 ℃ followed by three-stage leaching by 15 g/L HCl+5 g/L HF mixed acid solution was adopted. Results of XRD and SEM analysis showed that the K element in feldspar would partly be gasified and removed by chloridizing roasting. When the high concentrated mixed acid was adopted, the mineral structure of feldspar was easier to be destroyed and the higher leaching rate of Al was obtained, but the leaching rate and removal effect of K was limited by cubic silosilicite phase which was formed newly by K+ and [SiF6]2- in the leaching process.
[1] | 张海啟, 马亚梦, 谭秀民, 等. 高纯石英中杂质特征及深度化学提纯技术研究进展[J]. 矿产保护与利用, 2022(4): 159-165. ZHANG H Q, MA Y M, TAN X M, et al. Research progress on impurity characteristics and deep chemical purification technology in high-purity quartz[J]. Conservation and Utilization of Mineral Resources, 2022(4): 159-165. |
[2] | 汪灵, 党陈萍, 李彩侠, 等. 中国高纯石英技术现状与发展前景[J]. 地学前缘, 2014, 21(5): 267−273. doi: 10.13745/j.esf.2014.05.021 WANG L, DANG C P, LI C X, et al. Technology of high-purity quartz in China: status quo and prospect[J]. Earth Science Frontier, 2014, 21(5): 267−273. doi: 10.13745/j.esf.2014.05.021 |
[3] | 颜玲亚, 刘艳飞, 于海军, 等. 中国高纯石英资源开发利用现状及供需形势[J]. 国土资源情报, 2020(10): 98−103. YAN L Y, LIU Y F, YU H J, et al. Development and utilization status and supply and demand situation of high purity quartz resources in China[J]. Natural Resources Information, 2020(10): 98−103. |
[4] | 郝文俊, 冯书文, 詹建华, 等. 全球高纯石英资源现状、生产、消费及贸易格局[J]. 中国非金属矿工业导刊, 2020(5): 15−19. doi: 10.3969/j.issn.1007-9386.2020.05.005 HAO W J, FENG S W, ZHAN J J, et al. Current situation, production, consumption and trade pattern of high purity quartz in the world[J]. China Non-metallic Minerals Industry, 2020(5): 15−19. doi: 10.3969/j.issn.1007-9386.2020.05.005 |
[5] | 李光惠, 王超峰, 詹建华, 等. 高纯石英原料作为战略性矿产的分析及建议[J]. 中国非金属矿工业导刊, 2020(5): 20−24. doi: 10.3969/j.issn.1007-9386.2020.05.006 LI G H, WANG C F, ZHAN J H, et al. Analysis and suggestions on high purity quartz raw material as strategic minerals[J]. China Non-metallic Minerals Industry, 2020(5): 20−24. doi: 10.3969/j.issn.1007-9386.2020.05.006 |
[6] | 张海啟, 朱黎宽, 赵海波, 等. 河南卢氏龙泉坪伟晶岩型高纯石英矿床的首次发现及找矿意义[J]. 矿产保护与利用, 2022(4): 153-158. ZHANG H Q, ZHU L K, ZHAO H B, et al. First Discovery of the Longquanping Pegmatitic high-purity quartz deposit in the area of Lushi, Henan: implications for exploration [J]. Conservation and Utilization of Mineral Resources, 2022(4): 153-158. |
[7] | 李爱民. 我国石英与长石浮选分离的研究进展[J]. 矿产保护与利用, 2021, 41(6): 27−34. doi: 10.13779/j.cnki.issn1001-0076.2021.06.004 LI A M. Research progress in flotation separation of quartz and feldspar in China[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 27−34. doi: 10.13779/j.cnki.issn1001-0076.2021.06.004 |
[8] | 石钰, 张磊, 周东站, 等. 高纯石英砂的制备及应用研究进展[J]. 中国建材科技, 2019, 28(4): 73−75. SHI Y, ZHANG L, ZHOU D Z, et al. Study on preparation and application of higher purity quartz sand[J]. China Building Materials Science & Technology, 2019, 28(4): 73−75. |
[9] | IRANNAJAD M, MEHDILO A, NURI OS. Influence of microwave irradiation on ilmenite flotation behavior in the presence of different gangue minerals[J]. Separation & Purification Technology, 2014, 132(6): 401−412. |
[10] | SAYILGAN A, AROL AI. Effect of carbonate alkalinity on flotation behavior of quartz[J]. International Journal of Mineral Processing, 2004, 74(s 1/2/3/4): 233−238. |
[11] | 王安书, 张智慧, 张亚增, 等. 花岗伟晶岩制备高纯石英砂可行性研究[J]. 有色金属(选矿部分), 2022(2): 81−86. QANG A S, ZHANG Z H, ZHANG Y Z, et al. Feasibility study on preparation of high purity quartz sand from granite pegmatite[J]. Nonferrous Metals(Mineral Processing Section), 2022(2): 81−86. |
[12] | 马超, 冯安生, 刘长淼, 等. 高纯石英原料矿物学特征与加工技术进展[J]. 矿产保护与利用, 2019, 39(6): 48−57. doi: 10.13779/j.cnki.issn1001-0076.2019.06.008 MA C, FENG A S, LIU C M, et al. Mineralogical characteristics and progress in processing technology of raw materials of high purity quartz[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 48−57. doi: 10.13779/j.cnki.issn1001-0076.2019.06.008 |
[13] | 苏英, 周永恒, 黄武, 等. 石英玻璃与HF酸反应动力学的研究[J]. 硅酸盐学报, 2004, 32(3): 287−293. doi: 10.3321/j.issn:0454-5648.2004.03.016 SU Y, ZHOU Y H, HUANG W, et al. Study on reaction kinetics between silica glasses and hydrofluoric acid[J]. Journal of the Chinese Ceramic Society, 2004, 32(3): 287−293. doi: 10.3321/j.issn:0454-5648.2004.03.016 |
[14] | 银锐明, 李静, 侯清麟, 等. 微波和酸蚀作用下石英砂中气液包裹体的去除机理[J]. 中南大学学报(自然科学版), 2014, 45(2): 389−394. YIN R M, LI J, HOU Q L, et al. Removal mechanism of gas-liquid inclusions in quartz sand under microwave and acid corrosion[J]. Journal of Central South University(Science and Technology), 2014, 45(2): 389−394. |
[15] | ZHANG Z, LI J, LI X, et al. High efficiency iron removal from quartz sand using phosphoric acid[J]. International Journal of Mineral Processing, 2012, 114/115/116/117(12): 30−34. |
[16] | 吴逍. 高纯石英原料选择评价及提纯工艺研究[D]. 绵阳: 西南科技大学, 2016. WU X. Selection and evaluation of high purity quartz materials and purification technology research [D]. Mianyang: Southwest University of science and technology, 2016. |
[17] | 林敏. 脉石英中白云母、晶格杂质分离及机理[D]. 武汉: 武汉理工大学, 2018. LIN M. Mechanism of removing muscovite and lattice impurity elements from vein quartz[D]. Wuhan: Wuhan University of Technology, 2018. |
[18] | 刘国库, 张文军, 马正先, 等. 硅石选矿提纯工艺研究现状[J]. 有色矿冶, 2007, 23(6): 26−30. doi: 10.3969/j.issn.1007-967X.2007.06.008 LIU G K, ZHANG W J, MA X Z, et al. Present Situation of Researching on Purifying Silica by Mineral Processing[J]. Non-Ferrous Mining and Metallurgy, 2007, 23(6): 26−30. doi: 10.3969/j.issn.1007-967X.2007.06.008 |
[19] | 茆令文, 谷翠红, 吴建新, 等. 脉石英替代水晶生产高纯石英砂试验研究[J]. 建材世界, 2010, 31(1): 1−4. doi: 10.3963/j.issn.1674-6066.2010.01.001 MAO L W, GU C H, WU J X, et al. Experimental study on replacing crystal with vein quartz to produce high purity quartz sand[J]. The World of Building Materials, 2010, 31(1): 1−4. doi: 10.3963/j.issn.1674-6066.2010.01.001 |
XRD analysis results of the raw material
SEM results of roasting product and leaching residue by different conditions