Citation: | ZHANG Haiqi, ZHANG Hongli, MA Yameng, ZHU Likuan, GUO Lixiang, LIU Guangxue, GUO Feng, WANG Shoujing. Establishment and Practice of a Whole Chain Survey and Evaluation System for Pegmatite-Type High Purity Quartz Resources: A Case Study in North Qinling Region, China[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 15-21. doi: 10.13779/j.cnki.issn1001−0076.2022.05.003 |
High purity quartz (HPQ), as a key basic material for strategic emerging industries, is essential to ensure the security of China's resource supply. In this paper, the pegmatite-type HPQ was selected as the research object, and then a whole chain survey and evaluation system for pegmatite-type HPQ was first established in China. This system included metallogenic prospect prediction, survey area delineation, accurate sample collection, sample pretreatment, deep beneficiation and impurity removal, deep chemical purification, and analysis of product. Moreover, the North Qinling region was chosen to proof of the concept. It was found that 11 pegmatite dikes could produce 4N level (SiO2 content ≥ 99.99%), even 4N5 level (SiO2 content ≥ 99.995%) of HPQ from 350 pegmatite dikes in this area. The methodological system realized the precise investigation and evaluation of the pegmatite-type HPQ, and the hierarchical evaluation according to the resource characteristics. More importantly, the development and utilization program and product application analysis for different veins were effectively established, which fully ensured that high quality resources were used in the terminal market. These findings would provide a reference for the mining discovery of HPQ, and strongly support the secure supply of key materials for the strategic emerging industries in China.
[1] | 世界及分国别石英砂产量(年)[R]. CBC金属网, https://www.cbcie.com/13247/0/list.html. World and country production of quartz sand (year)[R]. CBC Metal Net, https://www.cbcie.com/13247/0/list.html. |
[2] | 联合国商品贸易署UN Comtrade[EB/OL]. (2020-07-08) [2020-08-15]. https://comtrade.un.org/data/. UN Comtrade[EB/OL]. (2020-07-08) [2020-08-15]. https://comtrade.un.org/data/. |
[3] | MÜLLER, A, WANVIK J E, IHLEN P M. Petrological and chemical characterization of high-purity quartz deposits with examples from norway[M]//Götze, J. , Möckel, R. (eds) Quartz: deposits, mineralogy and analytics. Springer Geology. Springer, Berlin, Heidelberg, 2012. |
[4] | PAN X D, LI S Q, LI Y K, et al. Resource, characteristic, purification and application of quartz: a review[J]. Minerals Engineering, 2022(183): 107600. |
[5] | RUSK, B. Cathodoluminescent textures and trace elements in hydrothermal quartz[M]∥Götze, J. , Möckel, R. (eds) Quartz: deposits, mineralogy and analytics. Springer Geology. Springer, Berlin, Heidelberg, 2012. |
[6] | 焦丽香. 我国脉石英资源开发利用现状及供需分析[J]. 中国非金属矿工业导刊, 2019(2): 11−14. doi: 10.3969/j.issn.1007-9386.2019.02.004 JIAO L X. Current situation and supply demand analysis of the development and utilization of vein quartz resources in China[J]. China Non-metallic Mineral Industry Guide, 2019(2): 11−14. doi: 10.3969/j.issn.1007-9386.2019.02.004 |
[7] | 从金瑶. 几种伟晶岩石英的矿石学特征及杂质去除工艺研究[D]. 绵阳: 西南科技大学, 2019. CONG J Y. Study on oreological characteristics and impurity removal process of several pegmatite quartz[D]. Minayang: Southwest university of science and technology, 2019. |
[8] | 张海啟, 马亚梦, 谭秀民, 等. 高纯石英中杂质特征及深度化学提纯技术研究进展[J]. 矿产保护与利用, 2022, 42(4): 159-165. ZHANG H Q, MA Y M, TAN X M, et al. Research progress on impurity characteristics and deep chemical purification technology in high-purity quartz [J]. Conservation and Utilization of Mineral Resources, 2022, 42(4): 159-165. |
[9] | 王云月, 邓宇峰, 詹建华, 等. 高纯石英原料特征和矿床成因研究现状综述[J]. 地质论评, 2021, 67(5): 1465−1477. doi: 10.16509/j.georeview.2021.08.033 WANG Y Y, DENG Y F, ZHAN J H, et al. Review on the research of characteristics and ore deposit genesis of high purity raw quartz[J]. Geological Review, 2021, 67(5): 1465−1477. doi: 10.16509/j.georeview.2021.08.033 |
[10] | 廊坊市市场监督管理局. 电子专用材料单晶硅生长用石英坩埚工艺技术规范: DB1310/T 227—2020[S]. 2020. Langfang Market Supervision Administration. Technical specification for quartz crucible process for growth of monocrystalline silicon for special electronic materials: DB1310/T 227—2020[S]. 2020. |
[11] | 湖南省经信委. 高纯(SiO2≥99.997%)石英砂: DB43/T 1167—2016[S]. 2016. Hunan Provincial Economic and Information Commission. High purity (SiO2≥99.997%) quartz sand: DB43/T 1167—2016[S]. 2016. |
[12] | 全国半导体设备和材料标准化技术委员会. 光伏用高纯石英砂: GB/T 32649—2016[S]. 北京: 中国标准出版社, 2016. Semiconductor Equipment and Materials. High purity arenaceous quartz used in photovoltaic applications: GB/T 32649—2016[S]. Beijing: Standards Press of China, 2016. |
[13] | 全国半导体设备和材料标准化技术委员会. 电感耦合等离子质谱法检测石英砂中痕量元素: GB/T 32650—2016[S]. 北京: 中国标准出版社, 2016. Semiconductor Equipment and Materials. Determining the content of trace elements in arenaceous quartz by inductively coupled plasma mass spectrometry (ICP-MS): GB/T 32650—2016[S]. Beijing: Standards Press of China, 2016. |
[14] | 全国工业陶瓷标准化技术委员会功能陶瓷分技术委员会. 高纯石英中杂质含量的测定方法 电感耦合等离子体原子发射光谱法: JC/T 2027—2010[S]. 2010. Functional Ceramics, Determination of impurities in high purity quartz—Inductively coupled plasma atomic emission spectrometry: JC/T 2027—2010[S]. 2010. |
[15] | 张宏丽, 倪文山, 刘磊, 等. 冷焰模式-电感耦合等离子体质谱法测定高纯石英中痕量铁[J]. 冶金分析, 2021, 41(7): 28−34. doi: 10.13228/j.boyuan.issn1000-7571.011338 ZHANG H L, NI W S, LIU L, et al. Determination of ultra-trace iron in high-purity quartz by cool flame mode-inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2021, 41(7): 28−34. doi: 10.13228/j.boyuan.issn1000-7571.011338 |
[16] | 张海啟, 倪文山, 刘磊, 等. 低射频功率-电感耦合等离子体质谱法测定高纯石英样品中痕量钾[J]. 矿产保护与利用, 2022, 42(4): 166-172. ZHANG H Q, NI W S, LIU L, et al. Determination of ultra-trace potassium in high purity quartz by low RF power-inductively coupled plasma mass spectrometry [J]. Conservation and Utilization of Mineral Resources, 2022, 42(4): 166-172. |
[17] | DALMARTELLO E, BERNARDIS S, LARSEN R B, et al. Electrical fragmentation as a novel route for there finement of quartz raw materials for trace mineral impurities[J]. Powder Technology, 2012(224): 209−216. |
[18] | KOVALCHUK B M, KHARLOV A V, VIZIR V A, et al. High-voltage pulsed generator for dynamic fragmentation of rocks[J]. The Review of scientific instruments, 2010, 81, 103506. DOI:10.1063/1.3497307. |
[19] | KLINE W E, FOGLER H S. Dissolution of silicate minerals by hydrofluoric acid[J]. Industrial & Engineering Chemistry Fundamentals, 1981, 20(2): 155−161. |
[20] | MÜLLER A, WIEDENBECK M, VAN-DEN-KERKHOF A M. Trace element in quartz-a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study[J]. European Journal of Mineralogy, 2003, 15(4): 747. doi: 10.1127/0935-1221/2003/0015-0747 |
[21] | 王守敬, 刘磊, 赵毅, 等. 一种高纯石英中流体包裹体含量的检测方法: 202110644067.9[P]. 2020-06-10. WANG S J, LIU L, ZHAO Y, et al, A method for detecting fluid inclusion content in high purity quartz: 202110644067.9[P]. 2020-06-10. |
Whole chain survey and evaluation system for pegmatite type high purity quartz resources
Characteristics of the inclusions in quartz (a. primary inclusions with the facial distribution; b. secondary inclusions with the linear distribution; c. gas-liquid two-phase fluid inclusion; d. gas-liquid two-phase fluid inclusion and three-phase inclusion containing daughter phase)