2024 Vol. 51, No. 3
Article Contents

SUN Meng, LUO Qiankun, KONG Zhiwei, GUO Ming, LIU Mingli, QIAN Jiazhong. A novel approach for estimating hydraulic conductivity of non-Gaussian aquifer[J]. Hydrogeology & Engineering Geology, 2024, 51(3): 23-33. doi: 10.16030/j.cnki.issn.1000-3665.202308022
Citation: SUN Meng, LUO Qiankun, KONG Zhiwei, GUO Ming, LIU Mingli, QIAN Jiazhong. A novel approach for estimating hydraulic conductivity of non-Gaussian aquifer[J]. Hydrogeology & Engineering Geology, 2024, 51(3): 23-33. doi: 10.16030/j.cnki.issn.1000-3665.202308022

A novel approach for estimating hydraulic conductivity of non-Gaussian aquifer

More Information
  • The ensemble Kalman filter (EnKF) is one of the most widely used data assimilation methods. However, it exhibits limitations in handling non-Gaussian problems. To effectively address such issues and accurately describe the connectivity of aquifers, a novel approach named NS-ES-MDA is developed in this study. The proposed NS-ES-MDA synergistically combines the normal-score transformation (NST) with ensemble smoother with multiple data assimilation (ES-MDA). Through comparative experiments, the efficacy of NS-ES-MDA in estimating the hydraulic conductivity of non-Gaussian distributed aquifers is demonstrated. By assimilating the same dataset, NS-ES-MDA exhibits approximately 34% improvement in parameter estimation accuracy and about 35% enhancement in computational efficiency compared to the restart normal-score ensemble Kalman filter (rNS-EnKF). Furthermore, the NS-ES-MDA shows case robustness against the “equifinality” and displays remarkable updating capabilities, which leads to more precise parameter estimates. This study provides an effective solution for parameter estimation in non-Gaussian distributed aquifers.

  • 加载中
  • [1] 张江江. 地下水污染源解析的贝叶斯监测设计与参数反演方法[D]. 杭州:浙江大学,2017. [ZHANG Jiangjiang. Bayesian monitoring design and parameter inversion for groundwater contaminant source identification[D]. Hangzhou:Zhejiang University,2017. (in Chinese with English abstract)]

    Google Scholar

    ZHANG Jiangjiang. Bayesian monitoring design and parameter inversion for groundwater contaminant source identification[D]. Hangzhou: Zhejiang University, 2017. (in Chinese with English abstract)

    Google Scholar

    [2] 薛佩佩,文章,梁杏. 地质统计学在含水层参数空间变异研究中的应用进展与发展趋势[J]. 地质科技通报,2022,41(1):209 − 222. [XUE Peipei,WEN Zhang,LIANG Xing. Application and development trend of geostatistics in the research of spatial variation of aquifer parameters[J]. Bulletin of Geological Science and Technology,2022,41(1):209 − 222. (in Chinese with English abstract)]

    Google Scholar

    XUE Peipei, WEN Zhang, LIANG Xing. Application and development trend of geostatistics in the research of spatial variation of aquifer parameters[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 209 − 222. (in Chinese with English abstract)

    Google Scholar

    [3] 曾献奎. 地下水流数值模拟不确定性分析与评价[D]. 南京:南京大学,2012. [ZENG Xiankui. The uncertainty analysis and assessment of groundwater flow numerical simulation[D]. Nanjing:Nanjing University,2012. (in Chinese with English abstract)]

    Google Scholar

    ZENG Xiankui. The uncertainty analysis and assessment of groundwater flow numerical simulation[D]. Nanjing: Nanjing University, 2012. (in Chinese with English abstract)

    Google Scholar

    [4] CHEN Yan,ZHANG Dongxiao. Data assimilation for transient flow in geologic formations via ensemble Kalman filter[J]. Advances in Water Resources,2006,29(8):1107 − 1122. doi: 10.1016/j.advwatres.2005.09.007

    CrossRef Google Scholar

    [5] HUANG Chunlin,HU B X,LI Xin,et al. Using data assimilation method to calibrate a heterogeneous conductivity field and improve solute transport prediction with an unknown contamination source[J]. Stochastic Environmental Research and Risk Assessment,2009,23(8):1155 − 1167. doi: 10.1007/s00477-008-0289-4

    CrossRef Google Scholar

    [6] 胡旭冉. 基于集合卡尔曼滤波融合的西北太平洋海表面温度时空分布特征研究[D]. 上海:上海海洋大学,2018. [HU Xuran. Spatial and temporal distribution characteristics of sea surface temperature based on ensemble Kalman filtering fusion in the northwest Pacific Ocean[D]. Shanghai:Shanghai Ocean University,2018. (in Chinese with English abstract)]

    Google Scholar

    HU Xuran. Spatial and temporal distribution characteristics of sea surface temperature based on ensemble Kalman filtering fusion in the northwest Pacific Ocean[D]. Shanghai: Shanghai Ocean University, 2018. (in Chinese with English abstract)

    Google Scholar

    [7] 马超群. 基于集合卡尔曼滤波的大气化学资料同化技术研究[D]. 南京:南京大学,2020. [MA Chaoqun. Study of atmospheric chemistry data assimilation based on ensemble Kalman filter[D]. Nanjing:Nanjing University,2020. (in Chinese with English abstract)]

    Google Scholar

    MA Chaoqun. Study of atmospheric chemistry data assimilation based on ensemble Kalman filter[D]. Nanjing: Nanjing University, 2020. (in Chinese with English abstract)

    Google Scholar

    [8] 杨运,吴吉春,骆乾坤,等. 考虑预报偏差的迭代式集合卡尔曼滤波在地下水水流数据同化中的应用[J]. 水文地质工程地质,2022,49(6):13 − 23. [YANG Yun,WU Jichun,LUO Qiankun,et al. Application of the bias aware Ensemble Kalman Filter with Confirming Option(Bias-CEnKF) in groundwater flow data assimilation[J]. Hydrogeology & Engineering Geology,2022,49(6):13 − 23. (in Chinese with English abstract)]

    Google Scholar

    YANG Yun, WU Jichun, LUO Qiankun, et al. Application of the bias aware Ensemble Kalman Filter with Confirming Option(Bias-CEnKF) in groundwater flow data assimilation[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 13 − 23. (in Chinese with English abstract)

    Google Scholar

    [9] 高善露. 基于集合卡尔曼滤波的油藏参数反演方法研究[D]. 合肥:合肥工业大学,2019. [GAO Shanlu. Research of the ensemble Kalman filter for reservoir parameter inversion method[D]. Hefei:Hefei University of Technology,2019. (in Chinese with English abstract)]

    Google Scholar

    GAO Shanlu. Research of the ensemble Kalman filter for reservoir parameter inversion method[D]. Hefei: Hefei University of Technology, 2019. (in Chinese with English abstract)

    Google Scholar

    [10] GODOY V A,NAPA-GARCÍA G F,GÓMEZ-HERNÁNDEZ J J. Ensemble random forest filter:An alternative to the ensemble Kalman filter for inverse modeling[J]. Journal of Hydrology,2022,615:128642. doi: 10.1016/j.jhydrol.2022.128642

    CrossRef Google Scholar

    [11] ZOVI F,CAMPORESE M,HENDRICKS FRANSSEN H J,et al. Identification of high-permeability subsurface structures with multiple point geostatistics and normal score ensemble Kalman filter[J]. Journal of Hydrology,2017,548:208 − 224. doi: 10.1016/j.jhydrol.2017.02.056

    CrossRef Google Scholar

    [12] MORADKHANI H,HSU K L,GUPTA H,et al. Uncertainty assessment of hydrologic model states and parameters:Sequential data assimilation using the particle filter[J]. Water Resources Research,2005,41(5):W05012.

    Google Scholar

    [13] ZHANG Jiangjiang,ZHENG Qiang,WU Laosheng,et al. Using deep learning to improve ensemble smoother:Applications to subsurface characterization[J]. Water Resources Research,2020,56(12):e2020WR027399. doi: 10.1029/2020WR027399

    CrossRef Google Scholar

    [14] CAO Zhendan,LI Liangping,CHEN Kang. Bridging iterative Ensemble Smoother and multiple-point geostatistics for better flow and transport modeling[J]. Journal of Hydrology,2018,565:411 − 421. doi: 10.1016/j.jhydrol.2018.08.023

    CrossRef Google Scholar

    [15] ZHOU Haiyan,GÓMEZ-HERNÁNDEZ J J,HENDRICKS FRANSSEN H J,et al. An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering[J]. Advances in Water Resources,2011,34(7):844 − 864. doi: 10.1016/j.advwatres.2011.04.014

    CrossRef Google Scholar

    [16] XU Teng,JAIME GÓMEZ-HERNÁNDEZ J,ZHOU Haiyan,et al. The power of transient piezometric head data in inverse modeling:An application of the localized normal-score EnKF with covariance inflation in a heterogenous bimodal hydraulic conductivity field[J]. Advances in Water Resources,2013,54:100 − 118. doi: 10.1016/j.advwatres.2013.01.006

    CrossRef Google Scholar

    [17] TANG Q,KURTZ W,BRUNNER P,et al. Characterisation of river-aquifer exchange fluxes:The role of spatial patterns of riverbed hydraulic conductivities[J]. Journal of Hydrology,2015,531:111 − 123. doi: 10.1016/j.jhydrol.2015.08.019

    CrossRef Google Scholar

    [18] XU Teng,GÓMEZ-HERNÁNDEZ J J. Simultaneous identification of a contaminant source and hydraulic conductivity via the restart normal-score ensemble Kalman filter[J]. Advances in Water Resources,2018,112:106 − 123. doi: 10.1016/j.advwatres.2017.12.011

    CrossRef Google Scholar

    [19] SKJERVHEIM J A,EVENSEN G,HOVE J,et al. An Ensemble Smoother for assisted History Matching[C]// SPE Reservoir Simulation Symposium All Days. Woodlands:Society of Petroleum Engineers,2011:SPE-141929-MS.

    Google Scholar

    [20] EMERICK A A,REYNOLDS A C. Ensemble smoother with multiple data assimilation[J]. Computers & Geosciences,2013,55:3 − 15.

    Google Scholar

    [21] EVENSEN G. Analysis of iterative ensemble smoothers for solving inverse problems[J]. Computational Geosciences,2018,22(3):885 − 908. doi: 10.1007/s10596-018-9731-y

    CrossRef Google Scholar

    [22] HAMILL T M,WHITAKER J S,SNYDER C. Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter[J]. Monthly Weather Review,2001,129(11):2776 − 2790. doi: 10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2

    CrossRef Google Scholar

    [23] ANDERSON J L. Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter[J]. Physica D:Nonlinear Phenomena,2007,230(1/2):99 − 111.

    Google Scholar

    [24] CHEN Yan,OLIVER D S. Cross-covariances and localization for EnKF in multiphase flow data assimilation[J]. Computational Geosciences,2010,14(4):579 − 601. doi: 10.1007/s10596-009-9174-6

    CrossRef Google Scholar

    [25] GASPARI G,COHN S E. Construction of correlation functions in two and three dimensions[J]. Quarterly Journal of the Royal Meteorological Society,1999,125(554):723 − 757. doi: 10.1002/qj.49712555417

    CrossRef Google Scholar

    [26] BAKKER M,POST V,LANGEVIN C D,et al. Scripting MODFLOW model development using python and FloPy[J]. Ground Water,2016,54(5):733 − 739. doi: 10.1111/gwat.12413

    CrossRef Google Scholar

    [27] CHEN Zi,XU Teng,GÓMEZ-HERNÁNDEZ J J,et al. Contaminant spill in a sandbox with non-gaussian conductivities:Simultaneous identification by the restart normal-score ensemble Kalman filter[J]. Mathematical Geosciences,2021,53(7):1587 − 1615. doi: 10.1007/s11004-021-09928-y

    CrossRef Google Scholar

    [28] NASH J E,SUTCLIFFE J V. River flow forecasting through conceptual models part I—a discussion of principles[J]. Journal of Hydrology,1970,10(3):282 − 290. doi: 10.1016/0022-1694(70)90255-6

    CrossRef Google Scholar

    [29] GRAVEY M,MARIETHOZ G. QuickSampling v1.0:A robust and simplified pixel-based multiple-point simulation approach[J]. Geoscientific Model Development,2020,13(6):2611 − 2630. doi: 10.5194/gmd-13-2611-2020

    CrossRef Google Scholar

    [30] STREBELLE S. Multiple-point statistics simulation models:Pretty pictures or decision-making tools?[J]. Mathematical Geosciences,2021,53(2):267 − 278. doi: 10.1007/s11004-020-09908-8

    CrossRef Google Scholar

    [31] 崔凯鹏. 集合卡尔曼滤波在地下水流及溶质运移数据同化中的应用探讨[D]. 南京:南京大学,2013. [CUI Kaipeng. The application and discussion of ensemble Kalman filter method in groundwater flow and solute transport data assimilation[D]. Nanjing:Nanjing University,2013. (in Chinese with English abstract)]

    Google Scholar

    CUI Kaipeng. The application and discussion of ensemble Kalman filter method in groundwater flow and solute transport data assimilation[D]. Nanjing: Nanjing University, 2013. (in Chinese with English abstract)

    Google Scholar

    [32] WEN Xianhuan,GÓMEZ-HERNÁNDEZ J J. Numerical modeling of macrodispersion in heterogeneous media:A comparison of multi-Gaussian and non-multi-Gaussian models[J]. Journal of Contaminant Hydrology,1998,30(1/2):129 − 156.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(4)

Article Metrics

Article views(605) PDF downloads(114) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint