2024 Vol. 43, No. 4
Article Contents

WANG Xiaoqing, LIU Min, MAO Jingwen. 2024. The Paleoproterozoic basin evolution of the Zhongtiao Mountain region in the Trans-North China Orogen, North China Craton. Geological Bulletin of China, 43(4): 546-560. doi: 10.12097/gbc.2023.11.044
Citation: WANG Xiaoqing, LIU Min, MAO Jingwen. 2024. The Paleoproterozoic basin evolution of the Zhongtiao Mountain region in the Trans-North China Orogen, North China Craton. Geological Bulletin of China, 43(4): 546-560. doi: 10.12097/gbc.2023.11.044

The Paleoproterozoic basin evolution of the Zhongtiao Mountain region in the Trans-North China Orogen, North China Craton

More Information
  • This paper conducted detailed investigations of the lithological assemblages and stratigraphy of the Zhongtiao Group and the Danshanshi Group in Zhongtiao Mountain region, Trans-North China Orogen (NTCO), North China Craton. The Zhongtiao Group comprises of a suit of metamorphic sedimentary rocks, consisting of multicyclic sedimentary rocks composed of clastic rocks, mudstones and carbonate rocks. The geochemical characteristics of the metamorphic sandstone show that the Zhongtiao group experienced a transition from early relative stability to late activity. The age and source characteristics of detrital zircons from the Zhongtiao Group and age of intercalated volcanic rock indicate that they were deposited in a back-arc basin of active continental margin from ~2.1 Ga. The Danshanshi Group is a series of conglomerates and sandstones forming a molasse basin during the collisional orogeny stage at ~1.85 Ga. Taken together, we present a brief scenario for the evolution of the sedimentary basin in Zhongtiao mountain region. From ~2.1 Ga, the eastward-directed subduction of the ocean between western block and eastern block, back-arc basin (Zhongtiao Group) developed behind the arc that located in the west margin of eastern block. At ~1.85 Ga, the ocean between western block and eastern block closed, resulting in the collision of the two blocks along TNCO, the Zhongtiao Back-arc basin underwent fold deformation and resulting in the crustal thickening followed by rapid exhumation/uplift, which shifted the back-arc basin to foreland basins. The Danshanshi molasse basin is formed in foreland basin. Such a shift from the back-arc basins to foreland basins in the Late Paleoproterozoic supports the model that the collision between Eastern and Western blocks occurred at ~1.85 Ga.

  • 加载中
  • [1] Bhatia M R. 1983. Plate tectonics and geochemical composition of sandstones [J]. Jour. Geol., 91(4): 611−627.

    Google Scholar

    [2] Faure M, Trap P, Lin W, et al. 2007. Polyorogenic evolution of the Paleoproterozoic Trans−North China Belt: New insights from the Luliangshan−Hengshan−Wutaishan and Fuping massifs[J]. Episodes, 30: 96−107. doi: 10.18814/epiiugs/2007/v30i2/004

    CrossRef Google Scholar

    [3] Krabbendam M, Prave T, Cheer D. 2008. A fluvial origin for the Neoproterozoic Morar Group, NW Scotland: Implications for Torridon Morar Group correlation and the Grenville Orogen foreland basin[J]. Journal of the Geological Society, 165: 379−394. doi: 10.1144/0016-76492007-076

    CrossRef Google Scholar

    [4] Kusky T M, Li J H. 2003. Paleoproterozoic tectonic evolution of the North China Craton[J]. Journal of Asian Earth Sciences, 22: 383−397. doi: 10.1016/S1367-9120(03)00071-3

    CrossRef Google Scholar

    [5] Li Q, Liu S, Wang Z, et al. 2011. Provenance and geotectonic setting of the Palaeoproterozoic Zhongtiao Group and implications for assembly of the North China Craton: Whole−rock geochemistry and detrital zircon data[J]. Journal of the Geological Society, 168(5): 1215−1224. doi: 10.1144/0016-76492010-146

    CrossRef Google Scholar

    [6] Li S Z, Zhao G C. 2007. SHRIMP U−Pb zircon geochronology of the Liaoji granitoids: Constraints on the evolution of the Paleoproterozoic Jiao−Liao−Ji belt in the Eastern Block of the North China Craton[J]. Precambrian Research, 158: 1−16. doi: 10.1016/j.precamres.2007.04.001

    CrossRef Google Scholar

    [7] Liu C H, Zhao G C, Sun M, et al. 2011a. U–Pb geochronology and Hf isotope geochemistry of detrital zircons from the Zhongtiao complex: Constraints on the tectonic evolution of the Trans−North China Orogen[J]. Precambrian Research, 222: 159−172.

    Google Scholar

    [8] Liu C H, Zhao G C, Sun M, et al. 2011b. U−Pb and Hf isotopic study of detrital zircons from the Hutuo Group in the Trans−North China Orogen and tectonic implications[J]. Gondwana Research, 20(1): 106−121. doi: 10.1016/j.gr.2010.11.016

    CrossRef Google Scholar

    [9] Liu C H, Zhao G C, Sun M, et al. 2011c. U−Pb and Hf isotopic study of detrital zircons from the Yejishan Group of the Lüliang complex: Constraints on the timing of collision between the Eastern and Western Blocks, North China Craton[J]. Sedimentary Geology, 236(1/2): 129−140.

    Google Scholar

    [10] Liu X, Fan H R, Santosh M, et al. 2016a. Geological and geochronological constraints on the genesis of the giant Tongkuangyu Cu deposit (Palacoproterozoic), North China Craton[J]. Int. Geol. Rev., 58: 155−170. doi: 10.1080/00206814.2015.1056759

    CrossRef Google Scholar

    [11] Liu X, Fan H R, Yang K F, et al. 2016b. Geochronology, redox−state and origin of the ore−hosting porphyry in the Tongkuangyu Cu deposit, North China Craton: Implications for metallogenesis and tectonic evolution[J]. Precambrian Research, 276: 211−232. doi: 10.1016/j.precamres.2016.02.006

    CrossRef Google Scholar

    [12] Meng X Y, Richards J P, Mao J W, et al. 2020. The Tongkuangyu Cu Deposit, Trans−North China Orogen: A metamorphosed Paleoproterozoic porphyry Cu deposit[J]. Economic Geology, 115(1): 51−77. doi: 10.5382/econgeo.4693

    CrossRef Google Scholar

    [13] Meng X Y, Kontak D J, Richards, J P, et al. 2021. Uncovering the missing magmatic link for the Tongkuangyu porphyry Cu deposit, Trans−North China Orogen: Implication for porphyry Cu deposit model and exploration[J]. Society of Economic Geologists Special Publication, 24(1): 121−135.

    Google Scholar

    [14] Peng P, Zhai, M G, Ernst R E, et al. 2008. A 1.78 Ga large igneous province in the North China Craton: The Xiong’er volcanic province and the North China dyke swarm[J]. Lithos, 101: 260−280. doi: 10.1016/j.lithos.2007.07.006

    CrossRef Google Scholar

    [15] Qiu Z J, Fan H R, Liu X, et al. 2016. Mineralogy, chalcopyrite Re−Os geochronology and sulfur isotope of the Hujiayu Cu deposit in the Zhongtiao Mountains, North China Craton: Implications for a Paleoproterozoic metamorphogenic copper mineralization[J]. Ore Geology Reviews, 78: 252−267.

    Google Scholar

    [16] Qiu Z J, Fan H R, Liu X, et al. 2017. Metamorphic PT−t evolution of Paleoproterozoic schist−hosted Cu deposits in the Zhongtiao Mountains, North China Craton: Retrograde ore formation during sluggish exhumation[J]. Precambrian Research, 300: 59−77. doi: 10.1016/j.precamres.2017.08.014

    CrossRef Google Scholar

    [17] Rogers J W, Santosh M. 2002. Configuration of Columbia, a Mesoproterozoic supercontinent[J]. Gondwana Research, 5: 5−22.

    Google Scholar

    [18] Tian W, Liu S W, Zhang H F. 2006. Paleoproterozoic potassic granitoids in the Sushui complex from the Zhongtiao Mountains, Northern China: Geochronology, geochemistry and petrogenesis[J]. Acta Geologyca Sinica (English Edition), 80: 875−885. doi: 10.1111/j.1755-6724.2006.tb00309.x

    CrossRef Google Scholar

    [19] Xia X P, Sun M, Zhao G C, et al. 2009. Detrital zircon U−Pb age and Hf isotope study of the khondalite in Trans−North China Orogen and its tectonic significance[J]. Geological Magazine, 146: 701−716. doi: 10.1017/S0016756809006396

    CrossRef Google Scholar

    [20] Yu S Q, Liu S W, Tian W, et al. 2006. SHRIMP zircon U−Pb chronology and geochemical of the Henglingguan and Beiyu granitoids in the Zhongtiao Mountains, Shanxi Province[J]. Acta Geologyca Sinica, 80: 912−922. doi: 10.1111/j.1755-6724.2006.tb00312.x

    CrossRef Google Scholar

    [21] Yuan L L, Zhang X H, Yang Z L, et al. 2017. Paleoproterozoic Alaskan−type ultramafic–mafic intrusions in the Zhongtiao Mountain region, North China Craton: Petrogenesis and tectonic implications[J]. Precambrian Research, 296: 39−61. doi: 10.1016/j.precamres.2017.04.037

    CrossRef Google Scholar

    [22] Zhang J, Zhao G C, Sun M, et al. 2006. High−pressure mafic granulites in the Trans−North China Orogen: Tectonic significance and age[J]. Gondwana Research, 9: 349−362. doi: 10.1016/j.gr.2005.10.005

    CrossRef Google Scholar

    [23] Zhang J, Zhao G C, Li S Z, et al. 2007. Deformation history of the Hengshan Complex: Implications for the tectonic evolution of the Trans−North China Orogen[J]. Journal of Structural Geology, 29: 933−949. doi: 10.1016/j.jsg.2007.02.013

    CrossRef Google Scholar

    [24] Zhang J, Zhao G C, Li S Z, et al. 2009. Deformational history of the Fuping Complex and new U−Th−Pb geochronological constraints: Implications for the tectonic evolution of the Trans−North China Orogen[J]. Journal of Structural Geology, 31: 177−193. doi: 10.1016/j.jsg.2008.11.008

    CrossRef Google Scholar

    [25] Zhao G C, Cawood P A, Wilde S A, et al. 2002. Review of global 2.1-1.8 Ga orogens: Implications for a pre−Rodinia supercontinent[J]. Earth−Science Reviews, 59: 125−162. doi: 10.1016/S0012-8252(02)00073-9

    CrossRef Google Scholar

    [26] Zhao G C, Sun M, Wilde S A, et al. 2003. Assembly, accretion and breakup of the Paleo−Mesoproterozoic Columbia supercontinent: Records in the North China Craton[J]. Gondwana Research, 6: 417−434.

    Google Scholar

    [27] Zhao G C, Sun M, Wilde S A, et al. 2004. A Paleo−Mesoproterozoic supercontinent: Assembly, growth and breakup[J]. Earth−Science Reviews, 67: 91−123. doi: 10.1016/j.earscirev.2004.02.003

    CrossRef Google Scholar

    [28] Zhao G C, Sun M, Wilde S A, et al. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited[J]. Precambrian Research, 136: 177−202. doi: 10.1016/j.precamres.2004.10.002

    CrossRef Google Scholar

    [29] Zhao G C, Wilde S A, Guo J H, et al. 2010. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton[J]. Precambrian Research, 177: 266−276. doi: 10.1016/j.precamres.2009.12.007

    CrossRef Google Scholar

    [30] Zhao G C, Li S Z, Sun M, et al. 2011. Assembly, accretion, and break−up of the Palaeo−Mesoproterozoic Columbia supercontinent: record in the North China Craton[J]. International Geology Review, 53: 1331−1356. doi: 10.1080/00206814.2010.527631

    CrossRef Google Scholar

    [31] Zhao G C. 2016. Assembly, Accretion and Break−up of the Paleo−Mesoproterozoic Columbia (Nuna) supercontinent: Records in the North China Craton[J]. Acta Geologica Sinica (English Edition), 90(S1): 50. doi: 10.1111/1755-6724.12881

    CrossRef Google Scholar

    [32] 白瑾, 致信, 颜耀阳, 等. 1997. 中条山前寒武纪地质[M]. 天津: 天津科学技术出版社: 1−143.

    Google Scholar

    [33] 耿元生, 沈其韩, 任留东. 2010. 华北克拉通晚太古代末—古元古代初的岩浆事件及构造热体制[J]. 岩石学报, 26(7): 1945−1966.

    Google Scholar

    [34] 郭丽爽, 刘树文, 刘玉琳, 等. 2008. 中条山涑水杂岩中TTG片麻岩的锆石Hf同位素特征及其形成环境[J]. 岩石学报, 24(1): 139−148.

    Google Scholar

    [35] 侯泉林, 郭谦谦, 方爱民. 2018. 造山带研究中有关复理石和磨拉石的几个问题[J]. 岩石学报, 34(7): 1885−1896.

    Google Scholar

    [36] 胡国辉, 胡俊良, 陈伟, 等. 2010. 华北克拉通南缘中条山—嵩山地区1.78Ga基性岩墙群的地球化学特征及构造环境[J]. 岩石学报, 26: 1563−1576.

    Google Scholar

    [37] 李宁波, 罗勇, 郭双龙, 等. 2013. 中条山铜矿峪变石英二长斑岩的锆石U−Pb年龄和Hf同位素特征及其地质意义[J]. 岩石学报, 29(7): 2416−2424.

    Google Scholar

    [38] 李秋根, 刘树文, 王宗起, 等. 2008. 中条山绛县群碎屑锆石LA−ICP−MS U−Pb测年及其地质意义[J]. 岩石学报, 24(6): 1359−1368.

    Google Scholar

    [39] 李三忠, 李玺瑶, 戴黎明, 等. 2015. 前寒武纪地球动力学(Ⅵ): 华北克拉通形成[J]. 地学前缘, 22(6): 77−96.

    Google Scholar

    [40] 李三忠, 赵国春, 孙敏. 2016. 华北克拉通早元古代拼合与Columbia超大陆形成研究进展[J]. 科学通报, 61: 919−925.

    Google Scholar

    [41] 刘超辉, 刘福来, 赵国春. 2012. 华北克拉通中部造山带早元古代盆地演化[J]. 岩石学报, 28: 2770−2784.

    Google Scholar

    [42] 刘树文, 张臣, 刘超辉, 等. 2007. 中条山-吕梁山前寒武纪变质杂岩的独居石电子探针定年研究[J]. 地学前缘, (1): 64−74. doi: 10.3321/j.issn:1005-2321.2007.01.006

    CrossRef Google Scholar

    [43] 刘玄, 范宏瑞, 邱正杰, 等. 2015. 中条山地区绛县群和中条群沉积时限: 夹层斜长角闪岩SIMS锆石U−Pb年代学证据[J]. 岩石学报, 31(6): 1564−1572.

    Google Scholar

    [44] 陆松年, 杨春亮, 李怀坤, 等. 2002. 华北古大陆与哥伦比亚超大陆[J]. 地学前缘, (4): 225−233.

    Google Scholar

    [45] 邱正杰, 范宏瑞, 杨奎锋, 等. 2023. 中条山古元古代沉积岩容矿型铜钴矿床钴来源及富集过程[J]. 岩石学报, 39(4): 1019−1029.

    Google Scholar

    [46] 孙大中, 李惠民, 林源贤, 等. 1991. 中条山前寒武纪年代学、年代构造格架和年代地壳结构模式的研究[J]. 地质学报, (3): 216−231.

    Google Scholar

    [47] 孙大中, 胡维兴. 1993. 中条山前寒武纪年代构造格架和年代地壳结构[M]. 北京: 地质出版社: 1−168.

    Google Scholar

    [48] 王雪, 黄小龙, 马金龙, 等. 2015. 华北克拉通中部造山带南段早前寒武纪变质杂岩的Hf−Nd同位素特征及其地壳演化意义[J]. 大地构造与成矿学, 39(6): 1108−1118.

    Google Scholar

    [49] 肖玲玲, 刘福来. 2015. 华北克拉通中部造山带早前寒武纪变质演化历史评述[J]. 岩石学报, 31(10): 3012−3044.

    Google Scholar

    [50] 杨崇辉, 杜利林, 任留东, 等. 2015. 中条山铜矿峪变质火山岩的时代、构造背景及对成矿的制约[J]. 地球学报, 36(5): 613−633. doi: 10.3975/cagsb.2015.05.10

    CrossRef Google Scholar

    [51] 杨崇辉, 杜利林, 宋会侠, 等. 2018. 华北克拉通古元古代地层划分与对比[J], 岩石学报, 34(4): 1019−1057, 1229−1232.

    Google Scholar

    [52] 杨崇辉, 杜利林, 宋会侠, 等. 2020. 中条山地区涑水杂岩新太古代烟庄正长花岗岩年龄及成因: 对华北克拉通地壳演化的制约[J]. 地球科学, 45(9): 18.

    Google Scholar

    [53] 翟明国, 卞爱国, 赵太平. 2000. 华北克拉通新太古代末超大陆拼合及古元古代末—中元古代裂解[J]. 中国科学(D辑), 43: 219−232.

    Google Scholar

    [54] 翟明国. 2004. 华北克拉通2.1~1.7Ga地质事件群的分解和构造意义探讨[J]. 岩石学报, 6: 42−53.

    Google Scholar

    [55] 翟明国, 彭澎. 2007. 华北克拉通古元古代构造事件[J]. 岩石学报, 11: 2665−2682.

    Google Scholar

    [56] 翟明国. 2009. 华北克拉通两类早前寒武纪麻粒岩(HT−HP和HT−UHT)及其相关问题[J]. 岩石学报, 25(8): 1753−1771.

    Google Scholar

    [57] 翟明国. 2011. 克拉通化与华北陆块的形成[J]. 中国科学:地球科学, 41(8): 10.

    Google Scholar

    [58] 翟明国. 2012. 华北克拉通的形成以及早期板块构造[J]. 地质学报, 86(9): 1335−1349. doi: 10.3969/j.issn.0001-5717.2012.09.002

    CrossRef Google Scholar

    [59] 张晗. 2012. 山西中条山北段古元古代铜矿成矿作用[D]. 吉林大学博士学位论文: 1−168.

    Google Scholar

    [60] 张瑞英, 张成立, 第五春荣, 等. 2012. 中条山前寒武纪花岗岩地球化学、年代学及其地质意义[J]. 岩石学报, 28: 3559−3573.

    Google Scholar

    [61] 张瑞英, 张成立, 孙勇. 2013. 华北克拉通~2.5Ga地壳再造事件: 来自中条山TTG质片麻岩的证据[J]. 岩石学报, 29: 2265−2280.

    Google Scholar

    [62] 张瑞英, 孙勇. 2017. 华北克拉通南部早前寒武纪基底形成与演化[J]. 岩石学报, 33(10): 3027−3041.

    Google Scholar

    [63] 赵国春. 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论[J]. 岩石学报, 25(8): 1772−1792.

    Google Scholar

    [64] 赵凤清. 2006. 山西中条山地区古元古代地壳演化的年代学和地球化学制约[D]. 中国地质大学(北京)博士学位论文: 1−171.

    Google Scholar

    [65] 赵太平, 邓小芹, 胡国辉, 等. 2015. 华北克拉通古/中元古代界线和相关地质问题讨论[J]. 岩石学报, 31(6): 1495−1508.

    Google Scholar

    [66] 《中条山铜矿地质》编写组. 1978. 中条山铜矿地质[M]. 北京: 地质出版社: 25−88.

    Google Scholar

    [67] 朱日祥, 郑天愉. 2009. 华北克拉通破坏机制与古元古代板块构造体系[J]. 科学通报, 54(14): 1950−1961.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(1)

Article Metrics

Article views(584) PDF downloads(139) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint