2024 Vol. 44, No. 1
Article Contents

ZHANG Jianyong, CHANG Jian, LI Wenzheng, FU Xiaodong, YANG Lei, HE Yuan. 2024. Tectono-thermal evolution of the Micangshan Uplift in the northern Sichuan Basin. Sedimentary Geology and Tethyan Geology, 44(1): 58-70. doi: 10.19826/j.cnki.1009-3850.2021.12005
Citation: ZHANG Jianyong, CHANG Jian, LI Wenzheng, FU Xiaodong, YANG Lei, HE Yuan. 2024. Tectono-thermal evolution of the Micangshan Uplift in the northern Sichuan Basin. Sedimentary Geology and Tethyan Geology, 44(1): 58-70. doi: 10.19826/j.cnki.1009-3850.2021.12005

Tectono-thermal evolution of the Micangshan Uplift in the northern Sichuan Basin

More Information
  • The tectono-thermal history of the Micangshan Uplift since the Neoproterozoic was determined in this study based on the combined thermal simulation of the measured zircon (U-Th)/He and apatite fission track ages. The zircon (U-Th)/He ages and apatite fission track ages of the Precambrian samples in the Micangshan Uplift are 138-190 Ma and 106.1-120.6 Ma, respectively. These ages are lower than the corresponding stratigraphic ages or the diagenetic crystallization age, indicating that they effectively record the thermal information in the past. Thermal history modeling results show that the Micangshan Uplift since the Neoproterozoic experienced two rapid cooling events that occurred in Early Jurassic-Early Cretaceous and since late Miocene. They are respectively related to the collisions of the Yangtze-North China plates and India-Eurasia plates, whereas the slow cooling events during the Cretaceous-early Miocene were related to the ancient planation surface. According to the reconstructed burial and thermal history, the source rocks of the Lower Cambrian Qiongzhusi Formation in the Micangshan Uplift entered a high-overmature stage in the Late Triassic due to the high temperature (180-200℃) burial process. This study provides new insights for the tectono-thermal evolution and hydrocarbon accumulation, which are important for guiding further oil and gas exploration in the northern Sichuan Basin.

  • 加载中
  • [1] Arne D, Worley B, Wilson C, et al. , 1997. Differential Exhumation in Response to Episodic Thrusting along the Eastern Margin of the Tibet Plateau[J]. Tectonophysics, 280: 239-256. doi: 10.1016/S0040-1951(97)00040-1

    CrossRef Google Scholar

    [2] Chang J, Li D, Min K, et al. , 2019. Cenozoic Deformation of the Kalpin Fold-and-thrust belt, Southern Chinese Tian Shan: New Insights from Low-T thermochronology andSandbox Modeling[J]. Tectonophysics, 766: 416-432. doi: 10.1016/j.tecto.2019.06.018

    CrossRef Google Scholar

    [3] 常远, 许长海, Peter W. Reiners,等. 2010. 米仓山-汉南隆起白垩纪以来的剥露作用: 磷灰石(U-Th)/He年龄记录[J]. 地球物理学报, 53(4):912-919.

    Google Scholar

    Chang Y, Xu C H, Reiners P W, et al. 2010. The exhumation evolution of the Micang Shan-Hannan uplift since Cretaceous: evidence from apatite (U-Th)/He dating [J]. Chinese Journal of Geophysics, 53(4):912-919

    Google Scholar

    [4] 陈龙博, 何登发, 王贝, 等, 2017. 川东北地区通南巴背斜中三叠世以来构造变形时间厘定及其地质意义[J]. 大地构造与成矿学, 41(3): 433-445.

    Google Scholar

    Chen L B, He D F, Wang B, et al. , 2017. Dating the tectonic deformation since the Middle Triassic for the Tongnanba Anticline in the Northeastern Sichuan Basin and its geological implications [J]. Geotectonica et Metallogenia, 41 (3): 433- 445.

    Google Scholar

    [5] 陈洪德, 郭彤楼, 等, 2012. 中上扬子叠合盆地沉积充填过程与物质分布规律[M]. 北京: 科学出版社.

    Google Scholar

    Chen H D, Guo T L, et al., 2012. Sedimentary filling process and material distribution in the Middle and Upper Yangtze superimposed basins [M]. Beijing: Science Press.

    Google Scholar

    [6] Clift P, Hoang V, Hinton R, et al. , 2008. Evolving East Asian River Systems Reconstructed by Trace Element and Pb and Nd Isotope Variations in Modern and Ancient Red River-Song Hong Sediments[J]. Geochemistry, Geophysics, Geosystems, 9(4): 1-29.

    Google Scholar

    [7] 邓宾, Sueoka S, 刘树根, 等, 2014. 米仓山楔入冲断构造模型低温热年代学证据及其意义[J]. 地球物理学报, 57(4): 1155-1168 doi: 10.6038/cjg20140413

    CrossRef Google Scholar

    DENG B, SUEOKA S, LIU S G, LI Z W, LI J X, 2014. Wedge-thrust folding in the Micangshan constrained by low-temperature thermochronometer model and its significance[J]. Chinese Journal of Geophysics, 57(4): 1155-1168. doi: 10.6038/cjg20140413

    CrossRef Google Scholar

    [8] Dong Y, Liu X, Santosh M, et al. , 2012. Neoproterozoic Accretionary Tectonics along the Northwestern Margin of the Yangtze Block, China: Constraints from Zircon U-Pb Geochronology and Geochemistry[J]. Precambrian Research, 196-197: 247-274. doi: 10.1016/j.precamres.2011.12.007

    CrossRef Google Scholar

    [9] 杜金虎, 邹才能, 徐春春, 等, 川中古隆起龙王庙组特大型气田战略发现与理论技术创新[J]. 石油勘探与开发, 2014, 41(3): 268-277.

    Google Scholar

    Du J H, Zou C N, Xu C C, et al., Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of central Sichuan paleo-uplift, Sichuan Basin [J]. Petroleum Exploration and Development, 2014, 41(3): 268-277 (in Chinese with English abstract).

    Google Scholar

    [10] 段金宝, 梅庆华, 李毕松, 等, 2019. 四川盆地震旦纪-早寒武世构造-沉积演化过程[J]. 地球科学, 44(3): 738-755

    Google Scholar

    Duan J B, Mei Q H, Li B S, et al. , 2019. Sinian⁃Early Cambrian tectonic⁃sedimentary evolution in Sichuan Basin [J]. Earth Science, 44(3): 738-755.

    Google Scholar

    [11] Enkelmann E, Ratschbacher L, Jonckheere R, et al., 2006. Cenozoic Exhumation and Deformation of Northeastern Tibet and the Qinling: Is Tibetan Lower Crustal Flow Diverging around the Sichuan Basin? [J] GSA Bulletin, 118(5-6): 651-671.

    Google Scholar

    [12] Gan B, Lai S, Qin J, et al. , 2017. Neoproterozoic Alkaline Intrusive Complex in the Northwestern Yangtze Block, Micang Mountains Region, South China: Petrogenesis and Tectonic Significance[J]. International Geology Review, 59(3): 311-332. doi: 10.1080/00206814.2016.1258676

    CrossRef Google Scholar

    [13] 高平, 李双建, 何治亮, 等, 2020. 四川盆地广元-梁平古裂陷构造-沉积演化[J]. 石油与天然气地质, 41(4): 784-799 doi: 10.11743/ogg20200412

    CrossRef Google Scholar

    Gao P, Li S J, He Z L, et al. , 2020. Tectonic-sedimentary evolution of Guangyuan-Liangping paleo-rift in Sichuan Basin[J]. Oil & Gas Geology, 41(4): 784-799. doi: 10.11743/ogg20200412

    CrossRef Google Scholar

    [14] Ge X, Shen C, Selby D, et al. , 2018. Neoproterozoic-Cambrian Petroleum System Evolution of the Micang Shan Uplift, Northern Sichuan Basin, China: Insights From Pyrobitumen Rhenium-osmium Geochronology and Apatite Fission-track Analysis[J]. AAPG Bulletin, 102(8): 1429-1453. doi: 10.1306/1107171616617170

    CrossRef Google Scholar

    [15] Gleadow A, Harrison M, HOHN B, et al. , 2015. The Fish Canyon Tuff: A New Look at an Old Low-temperature Thermochronology Standard[J]. Earth and Planetary Science Letters, 424: 95-108. doi: 10.1016/j.jpgl.2015.05.003

    CrossRef Google Scholar

    [16] Green P, Duddy I, Laslett G, et al. , 1989. Thermal Annealing of Fission Tracks in Apatite: 4. Quantitative Modelling Techniques and Extension to Geological Timescales[J]. Chemical Geology, 79: 155-182.

    Google Scholar

    [17] 谷志东, 殷积峰, 姜华, 等, 2016. 四川盆地西北部晚震旦世—早古生代构造演化与天然气勘探[J]. 石油勘探与开发, 43(1): 1-11 doi: 10.1016/S1876-3804(16)30001-5

    CrossRef Google Scholar

    Gu Z F, Yin J F, Jiang H, et al. , 2016. . Tectonic evolution from Late Sinian to Early Paleozoic and natural gas exploration in northwestern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 43(1): 1-11. doi: 10.1016/S1876-3804(16)30001-5

    CrossRef Google Scholar

    [18] Guedes S, Moreira P, Devanathan R, et al. , 2013. Improved Zircon Fission-Track Annealing Model Based on Reevaluation of Annealing Data[J]. Physics & Chemistry of Minerals, 40(2): 93-106.

    Google Scholar

    [19] Guenthner W R, Reiners P W, Ketcham R A, et al. , 2013. Helium Diffusion in Natural Zircon: Radiation Damage, Anisotropy, and the Interpretation of Zircon (U-Th)/He Thermochronology[J]. American Journal of Science, 313(3), 145-198.

    Google Scholar

    [20] 何政伟, 刘援朝, 魏显贵, 等, 1997. 扬子克拉通北缘米仓山地区基底变质岩系同位素地质年代学[J]. 矿物岩石, 17(s1): 83-87 doi: 10.19719/j.cnki.1001-6872.1997.s1.010

    CrossRef Google Scholar

    He Z W, Liu Y C, Wei X G, et al. , 1997. Isotope chronology of basement metamorphic rocks in Micangshan area, northern margin of Yangtze craton[J]. Mineral Rocks, 17(S1): 83-87. doi: 10.19719/j.cnki.1001-6872.1997.s1.010

    CrossRef Google Scholar

    [21] Hetzel R, Dunkl I, Haider V, et al. , 2011. Peneplain Formation in Southern Tibet Predates the India-Asia Collision and Plateau Uplift[J]. Geology, 39(10): 983-986. doi: 10.1130/G32069.1

    CrossRef Google Scholar

    [22] Hu S, Raza A, Min K, et al. , 2006. Late Mesozoic and Cenozoic Thermotectonic Evolution along a Transect from the North China Craton through the Qinling Orogen into the Yangtze Craton, Central China[J]. Tectonics, 25(6): 1-15.

    Google Scholar

    [23] Jolivet M, 2015. Mesozoic Tectonic and Topographic Evolution of Central Asia and Tibet: a Preliminary Synthesis[J]. Geological Society, London, Special Publications, 427(1): 19-55.

    Google Scholar

    [24] Ketcham R A, Carter A, Donelick R A, et al., 2007. Improved Modeling of Fission-Track Annealing in Apatite[J]. American Mineralogist 92(5-6): 799-810.

    Google Scholar

    [25] Lei Y, Jia C, Li B, et al., 2012. Meso-Cenozoic Tectonic Events Recorded by Apatite Fission Track in the Northern Longmen-Micang Mountains Region. Acta Geologica Sinica, 86(1): 153-165.

    Google Scholar

    [26] Liu S, Deng B, Li Z, et al. , 2012. Architecture of Basin-mountain Systems and Their Influences on Gas Distribution: a Case Study from the Sichuan Basin, South China[J]. Journal of Asian Earth Sciences, 47: 204-215. doi: 10.1016/j.jseaes.2011.10.012

    CrossRef Google Scholar

    [27] 刘少峰, 张国伟, 程顺有, 等, 1999. 东秦岭-大别山及邻区挠曲类盆地演化与碰撞造山过程[J]. 地质科学, 34(3): 336-346

    Google Scholar

    Liu S F, Zhang G W, Cheng S Y, et al., 1999. Evolution of flexural basins and process of collision orogeny in east Qinling-Dabieshan and its adjacent regions. Scientia Geologica Sinica, 34(3): 336-346 (in Chinese with English abstract).

    Google Scholar

    [28] 罗冰, 周刚, 罗文军, 等, 2015. 川中古隆起下古生界—震旦系勘探发现于天然气富集规律[J]. 中国石油勘探, 20(2): 18-29

    Google Scholar

    Luo B, Zhou G, Luo W J, 2022. Discovery from Exploration of Lower Paleozoic-Sinian System in Central Sichuan Palaeo-uplift and Its Natural Gas Abundance Law[J]. . China Petroleum Exploration, 20(2): 18-29.

    Google Scholar

    [29] 马肖琳, 2019. 川北地区震旦系灯影组储层特征研究[D]. 北京: 中国石油大学(北京).

    Google Scholar

    Ma X L, 2019. Research on Reservoir Characteristics of the Sinian Dengying Formation in Northern Sichuan Basin. Beijing: China University Of Petroleum.

    Google Scholar

    [30] Meng Q, Wang E, Hu J, 2005. Mesozoic Sedimentary Evolution of the Northwest Sichuan Basin: Implication for Continued Clockwise Rotation of the South China Block[J]. GSA Bulletin, 117(3-4): 396-410.

    Google Scholar

    [31] Morin J, Jolivet M, Barrier L, et al. , 2019. Planation Surfaces of the Tian Shan Range (Central Asia): Insight on Several 100 Million Years of Topographic Evolution[J]. Journal of Asian Earth Sciences, 177: 52-65. doi: 10.1016/j.jseaes.2019.03.011

    CrossRef Google Scholar

    [32] 邱楠生, 胡圣标, 何丽娟, 2019. 沉积盆地地热学[M]. 青岛: 中国石油大学出版社.

    Google Scholar

    Qiu N S, Hu S B, He L J, 2019. Geothermics in Sedimentary Basins [M]. Qingdao: China University of Petroleum Press.

    Google Scholar

    [33] Rahn M, Seward D, 2000. How many track lengths do we need? Ontrack, 20: 12–15.

    Google Scholar

    [34] 沈中延, 肖安成, 王亮, 等, 2010. 四川北部米仓山地区下三叠统内部不整合面的发现及其意义[J]. 岩石学报, 26(4): 1313-1321

    Google Scholar

    Shen Z Y, Xiao A C, Wang L, et al. , 2010. Unconformity in the Lower Triassic of Micangshan Area, northern Sichuan Province: Its discovery and significance[J]. Acta Petrologica Sinica, 2010, 26(4): 1313-1321.

    Google Scholar

    [35] 孙东, 2011. 米仓山构造带构造特征及中-新生代构造演化[D]. 成都: 成都理工大学.

    Google Scholar

    Sun D, 2011. The structural character and Meso-Cenozoic evolution of Micang Mountain Structural Zone, Northern Sichuan Basin, China [D]. Chengdu: Chengdu University of Technology.

    Google Scholar

    [36] Tian Y, Kohn B P, Zhu C, et al. , 2012. Post-orogenic Evolution of the Mesozoic Micang Shan Foreland Basin System, Central China[J]. Basin Research, 24(1): 70-90. doi: 10.1111/j.1365-2117.2011.00516.x

    CrossRef Google Scholar

    [37] 田云涛, 朱传庆, 徐明, 等, 2010. 白垩纪以来米仓山-汉南穹隆剥蚀过程及其构造意义: 磷灰石裂变径迹的证据[J]. 地球物理学报, 53(4): 920-930 doi: 10.3969/j.issn.0001-5733.2010.04.017

    CrossRef Google Scholar

    Tian Y C, Shu C Q, Xu M, et al. , 2010. Exhumation history of the Micangshan-Hannan Dome since Cretaceous and its tectonic significance: evidences from Apatite Fission Track analysis[J]. Chinese Journal of Geophysics, 53(4): 920-930. doi: 10.3969/j.issn.0001-5733.2010.04.017

    CrossRef Google Scholar

    [38] 王国芝, 刘树根, 李娜, 等, 2014. 四川盆地北缘灯影组深埋白云岩优质储层形成与保存机制[J]. 岩石学报, 30(3): 667-678

    Google Scholar

    Wang G Z, Liu S G, Li N, Et Al. , 2014. Formation and preservation mechanism of high quality reservoir in deep burial dolomite in the Dengying Formation on the northern margin of the Sichuan basin[J]. Acta Petrologica Sinica, 30(3): 667-678.

    Google Scholar

    [39] 魏显贵, 杜思清, 何政伟, 等, 1997. 米仓山地区构造演化[J]. 矿物岩石, 17(S1): 107-113

    Google Scholar

    Wei X G, Du S Q, He Z W, et al. 1997. The tectonic evolution of Micangshan Area. Journal of Mineralogy and Petrology, 17(S1): 107-113 (in Chinese with English abstract).

    Google Scholar

    [40] Wolf R, Farley K, Silver L, 1996. Helium Diffusion and Low-temperature Thermochronometry of Apatite[J]. Geochimica et Cosmochimica Acta, 60(21): 4231-4240. doi: 10.1016/S0016-7037(96)00192-5

    CrossRef Google Scholar

    [41] Xu C H, Zhou Z Y, Chang Y, et al. , 2010. Genesis of Daba Arcuate Structural Belt Related to Adjacent Basement Upheavals: Constraints from Fission-Track and (U-Th)/He Thermochronology[J]. Sci. China Earth Sci, 53: 1634-1646. doi: 10.1007/s11430-010-4112-y

    CrossRef Google Scholar

    [42] 徐明, 朱传庆, 田云涛, 等, 2011. 四川盆地钻孔温度测量及现今地热特征[J]. 地球物理学报, 54(4): 1052-1060 doi: 10.3969/j.issn.0001-5733.2011.04.020

    CrossRef Google Scholar

    Xu M, Zhu C Q, Tian Y T, et al. , 2011. Borehole temperature logging and characteristics of subsurface temperature in Sichuan Basin[J]. Chinese Journal of Geophysics, 2011, 54(4): 1052-1060. doi: 10.3969/j.issn.0001-5733.2011.04.020

    CrossRef Google Scholar

    [43] Yang Z, Ratschbacher L, Jonckheere R, et al. , 2013. Late-stage Foreland Growth of China’s Largest Orogens (Qinling, Tibet): Evidence from the Hannan-Micang Crystalline Massifs and the Northern Sichuan Basin, Central China[J]. Lithosphere, 5(4): 420-437. doi: 10.1130/L260.1

    CrossRef Google Scholar

    [44] Yang Z, Shen C, Ratschbacher L, et al. , 2017. Sichuan Basin and Beyond: Eastward Foreland Growth of the Tibetan Plateau from an integration of Late Cretaceous-Cenozoic Fission Track and (U-Th)/He Ages of the Eastern Tibetan Plateau, Qinling, and Daba Shan[J]. Journal of Geophysical Research: Solid Earth, 122(6), 4712-4740.

    Google Scholar

    [45] 张茜, 董云鹏, 杨晨, 等, 2010. 米仓山隆升时代的沉积学制约[J]. 西北地质, 43(3): 12-19

    Google Scholar

    Zhang Q, Dong Y P, Yang C, Et Al. , 2022. Sedimentological Restriction During the Uplift Period in Micangshan [J]. NORTHWESTERN GEOLOGY, 2010, 43(3): 12-19.

    Google Scholar

    [46] 张艳妮, 李荣西, 刘海青, 等, 2014. 四川盆地北缘大巴山前陆构造中-新生代构造隆升史[J]. 地球科学与环境学报, 36(1): 231 − 238.

    Google Scholar

    Zhang Y N, Li R X, Liu H Q, et al., 2014. Mesozoic-Cenozoic Tectonic Uplift History of Dabashan Foreland Structure in the Northern Rim of Sichuan Basin[J]. Journal of Earth Sciences and Environment, 36(1): 230 − 238 (in Chinese with English abstract).

    Google Scholar

    [47] Zhao B, Mao K, Cai Y, et al. 2020. A combined Terra and Aqua MODIS land surface temperature and meteorological station data product for China from 2003 to 2017 [J]. Earth Syst. Sci. Data, 12, 2555-2577.

    Google Scholar

    [48] Zhao J, Zhou M, 2009. Secular Evolution of The Neoproterozoic Lithospheric Mantle Underneath the Northern Margin of the Yangtze Block, South China [J]. Lithos, 107: 152-168. doi: 10.1016/j.lithos.2008.09.017

    CrossRef Google Scholar

    [49] 周学海, 2015. 米仓山前缘震旦系灯影组油气探讨[D]. 成都: 成都理工大学.

    Google Scholar

    Zhou X H, 2015. Oil-gas prospects Discussion of Sinian Dengying Formation at frontal area of Micang Mountain. Chengdu: Chengdu University of technology.

    Google Scholar

    [50] 朱传庆, 邱楠生, 江强, 等, 2015. 川西坳陷鸭子河地区基于多种古温标的钻井热史恢复[J]. 地球物理学报, 58(10): 3660-3670 doi: 10.6038/cjg20151019

    CrossRef Google Scholar

    Zhu C Q, Qiu N S, Jiang Q, et al. , 2015. Thermal history reconstruction based on multiple paleo-thermal records of the Yazihe area, western Sichuan depression[J]. Chinese Journal of Geophysics, 58(10): 3660-3670. doi: 10.6038/cjg20151019

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(3)

Article Metrics

Article views(1083) PDF downloads(434) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint