2023 Vol. 43, No. 6
Article Contents

CHEN Qi, ZHANG Yang, TANG Wenwen, ZHU Yonglan, HE Fangting, ZONG Yibing, JIA Jianjun. Application of low-altitude airspace UAVs in beach terrain monitoring[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 55-68. doi: 10.16562/j.cnki.0256-1492.2023073001
Citation: CHEN Qi, ZHANG Yang, TANG Wenwen, ZHU Yonglan, HE Fangting, ZONG Yibing, JIA Jianjun. Application of low-altitude airspace UAVs in beach terrain monitoring[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 55-68. doi: 10.16562/j.cnki.0256-1492.2023073001

Application of low-altitude airspace UAVs in beach terrain monitoring

More Information
  • With the development of consumer-grade unmanned aerial vehicles (UAVs), new possibilities for beach monitoring are now available. However, different monitoring accuracies and suitability exist across different UAV platforms. We employed two UAV platforms, namely the DJI Phantom 4 RTK and DJI M300 RTK, in combination with two terrain monitoring techniques: Structure from Motion (SFM) photogrammetry and Light Detection and Ranging (LIDAR), to undertake beach terrain monitoring at Dasha Beach in Xiangshan County, Zhejiang, East China. The planimetric and elevation errors of low-altitude UAV measurements were assessed. Differences among the synchronously monitored results of diverse UAV platforms were analyzed, and their respective application scenarios were discussed. Additionally, we analyzed beach terrain characteristics and investigated beach terrain variations before and after winter. The analysis results show that the drone platform is capable of performing high-precision monitoring of beach topographic changes.

  • 加载中
  • [1] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 18190-2017 海洋学术语 海洋地质学[S]. 北京: 中国标准出版社, 2017

    Google Scholar

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 18190-2017 Oceanological Terminology—Marine Geology[S]. Beijing: Standards Press of China, 2017.

    Google Scholar

    [2] Chen B Q, Yang Y M, Wen H T, et al. High-resolution monitoring of beach topography and its change using unmanned aerial vehicle imagery[J]. Ocean & Coastal Management, 2018, 160:103-116.

    Google Scholar

    [3] 蔡锋, 苏贤泽, 刘建辉, 等. 全球气候变化背景下我国海岸侵蚀问题及防范对策[J]. 自然科学进展, 2008, 18(10):1093-1103 doi: 10.3321/j.issn:1002-008X.2008.10.002

    CrossRef Google Scholar

    CAI Feng, SU Xianze, LIU Jianhui, et al. The countermeasures of coastal erosion based on the global climate change[J]. Progress in Natural Science, 2008, 18(10):1093-1103. doi: 10.3321/j.issn:1002-008X.2008.10.002

    CrossRef Google Scholar

    [4] Luijendijk A, Hagenaars G, Ranasinghe R, et al. The state of the world's beaches[J]. Scientific Reports, 2018, 8(1):6641. doi: 10.1038/s41598-018-24630-6

    CrossRef Google Scholar

    [5] Vousdoukas M I, Ranasinghe R, Mentaschi L, et al. Sandy coastlines under threat of erosion[J]. Nature Climate Change, 2020, 10(3):260-263. doi: 10.1038/s41558-020-0697-0

    CrossRef Google Scholar

    [6] 李兵, 蔡锋, 曹立华, 等. 福建砂质海岸侵蚀原因和防护对策研究[J]. 台湾海峡, 2009, 28(2):156-162

    Google Scholar

    LI Bing, CAI Feng, CAO Lihua, et al. Causes of beach erosion in Fujian and preventions[J]. Journal of Oceanography in Taiwan Strait, 2009, 28(2):156-162.

    Google Scholar

    [7] 王广禄, 蔡锋, 苏贤泽, 等. 泉州市砂质海岸侵蚀特征及原因分析[J]. 台湾海峡, 2008, 27(4):547-554

    Google Scholar

    WANG Guanglu, CAI Feng, SU Xianze, et al. Characters of sand beach erosion in Quanzhou and it causes[J]. Journal of Oceanography in Taiwan Strait, 2008, 27(4):547-554.

    Google Scholar

    [8] 罗时龙, 蔡锋, 王厚杰. 海岸侵蚀及其管理研究的若干进展[J]. 地球科学进展, 2013, 28(11):1239-1247

    Google Scholar

    LOU Shilong, CAI Feng, WANG Houjie. Development of coastal erosion and management[J]. Advances in Earth Science, 2013, 28(11):1239-1247.

    Google Scholar

    [9] 王颖, 吴小根. 海平面上升与海滩侵蚀[J]. 地理学报, 1995, 50(2):118-127 doi: 10.3321/j.issn:0375-5444.1995.02.003

    CrossRef Google Scholar

    WANG Ying, WU Xiaogen. Sea level rise and beach response[J]. Acta Geographica Sinica, 1995, 50(2):118-127. doi: 10.3321/j.issn:0375-5444.1995.02.003

    CrossRef Google Scholar

    [10] Muzirafuti A, Randazzo G, Lanza S. UAV application for coastal area monitoring: a case study of Sant’Alessio Siculo, Sicily[C]//Proceedings of 2022 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea). Milazzo: IEEE, 2022: 143-147.

    Google Scholar

    [11] Baily B, Nowell D. Techniques for monitoring coastal change: a review and case study[J]. Ocean & Coastal Management, 1996, 32(2):85-95.

    Google Scholar

    [12] Westoby M J, Lim M, Hogg M, et al. Cost-effective erosion monitoring of coastal cliffs[J]. Coastal Engineering, 2018, 138:152-164. doi: 10.1016/j.coastaleng.2018.04.008

    CrossRef Google Scholar

    [13] Turner I L, Harley M D, Short A D, et al. A multi-decade dataset of monthly beach profile surveys and inshore wave forcing at Narrabeen, Australia[J]. Scientific Data, 2016, 3(1):160024. doi: 10.1038/sdata.2016.24

    CrossRef Google Scholar

    [14] Feagin R A, Williams A M, Popescu S, et al. The use of terrestrial laser scanning (TLS) in dune ecosystems: the lessons learned[J]. Journal of Coastal Research, 2014, 30(1):111-119.

    Google Scholar

    [15] Brooks S M, Spencer T. Temporal and spatial variations in recession rates and sediment release from soft rock cliffs, Suffolk coast, UK[J]. Geomorphology, 2010, 124(1-2):26-41. doi: 10.1016/j.geomorph.2010.08.005

    CrossRef Google Scholar

    [16] Pardo-Pascual J E, Almonacid-Caballer J, Ruiz L A, et al. Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision[J]. Remote Sensing of Environment, 2012, 123:1-11. doi: 10.1016/j.rse.2012.02.024

    CrossRef Google Scholar

    [17] Pierre G. Processes and rate of retreat of the clay and sandstone sea cliffs of the northern Boulonnais (France)[J]. Geomorphology, 2006, 73(1-2):64-77. doi: 10.1016/j.geomorph.2005.07.002

    CrossRef Google Scholar

    [18] Montreuil A L, Bullard J, Chandler J. Detecting seasonal variations in embryo dune morphology using a terrestrial laser scanner[J]. Journal of Coastal Research, 2013, 65(sp2):1313-1318.

    Google Scholar

    [19] Grohmann C H, Garcia G P B, Affonso A A, et al. Dune migration and volume change from airborne LiDAR, terrestrial LiDAR and Structure from Motion-Multi View Stereo[J]. Computers & Geosciences, 2020, 143:104569.

    Google Scholar

    [20] Troy C D, Cheng Y T, Lin Y C, et al. Rapid lake Michigan shoreline changes revealed by UAV LiDAR surveys[J]. Coastal Engineering, 2021, 170:104008. doi: 10.1016/j.coastaleng.2021.104008

    CrossRef Google Scholar

    [21] 毕海芸, 郑文俊, 曾江源, 等. SfM摄影测量方法在活动构造定量研究中的应用[J]. 地震地质, 2017, 39(4):656-674 doi: 10.3969/j.issn.0253-4967.2017.04.003

    CrossRef Google Scholar

    BI Haiyun, ZHENG Wenjun, ZENG Jiangyuan, et al. Application of SfM photogrammetry method to the quantitative study of active tectonics[J]. Seismology and Geology, 2017, 39(4):656-674. doi: 10.3969/j.issn.0253-4967.2017.04.003

    CrossRef Google Scholar

    [22] 魏占玉, Ramon A, 何宏林, 等. 基于SfM方法的高密度点云数据生成及精度分析[J]. 地震地质, 2015, 37(2):636-648

    Google Scholar

    WEI Zhanyu, Ramon A, HE Honglin, et al. Accuracy analysis of terrain point cloud acquired by “structure from motion” using aerial photos[J]. Seismology and Geology, 2015, 37(2):636-648.

    Google Scholar

    [23] Pitman S J, Hart D E, Katurji M H. Application of UAV techniques to expand beach research possibilities: a case study of coarse clastic beach cusps[J]. Continental Shelf Research, 2019, 184:44-53. doi: 10.1016/j.csr.2019.07.008

    CrossRef Google Scholar

    [24] 郭一栋, 林杭杰, 于谦, 等. 基于无人机SfM摄影测量的海岸盐沼前缘形态变化研究[J]. 海洋学报, 2022, 44(12):148-160

    Google Scholar

    GUO Yidong, LIN Hangjie, YU Qian et al. Morphology of coastal salt marsh margins: a study using UAV-based Structure-from-Motion photogrammetry[J]. Haiyang Xuebao, 2022, 44(12):148-160.

    Google Scholar

    [25] Westoby M J, Brasington J, Glasser N F, et al. ‘Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications[J]. Geomorphology, 2012, 179:300-314. doi: 10.1016/j.geomorph.2012.08.021

    CrossRef Google Scholar

    [26] 国家市场监督管理总局, 中国国家标准化管理委员会. GB/T 35018-2018 民用无人驾驶航空器系统分类及分级[S]. 北京: 中国标准出版社, 2018

    Google Scholar

    State Administration for Market Regulation, Standardization Administration of the People's Republic of China. GB/T 35018-2018 Classification and grading for civil unmanned aircraft system[S]. Beijing: Standards Press of China, 2018.

    Google Scholar

    [27] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 14950-2009 摄影测量与遥感术语[S]. 北京: 中国标准出版社, 2009

    Google Scholar

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 14950-2009 Terms of photogrammetry and remote sensing[S]. Beijing: Standards Press of China, 2009.

    Google Scholar

    [28] 国家市场监督管理总局, 中国国家标准化管理委员会. GB/T 39612-2020 低空数字航摄与数据处理规范[S]. 北京: 中国标准出版社, 2020

    Google Scholar

    State Administration for Market Regulation, Standardization Administration of the People's Republic of China. GB/T 39612-2020 Specifications for low-altitude digital aerial photography and data processing[S]. Beijing: Standards Press of China, 2020.

    Google Scholar

    [29] 中国民用航空局. 中国民用航空总局规章目录[EB/OL]. (2008-01-20)[2023-07-19]. http://www.caac.gov.cn/XXGK/XXGK/ZFGW/201601/t20160122_27768.html

    Google Scholar

    Civil Aviation Administration of China. Catalogue of regulations of the Civil Aviation Administration of China[EB/OL]. (2008-01-20)[2023-07-19]. http://www.caac.gov.cn/XXGK/XXGK/ZFGW/201601/t20160122_27768.html.

    Google Scholar

    [30] 贝京阳, 陈杲, 俞晓天. 浙江省南田岛附近潮流特征分析[J]. 海洋湖沼通报, 2022, 44(5):60-66

    Google Scholar

    BEI Jingyang, CHEN Gao, YU Xiaotian. Characterization of tidal current near Nantian Island, Zhejiang province[J]. Transactions of Oceanology and Limnology, 2022, 44(5):60-66.

    Google Scholar

    [31] 象山县地方志编纂委员会. 象山县志: 第一册[M]. 北京: 方志出版社, 2020: 405-407

    Google Scholar

    Xiangshan County Local Records Committee. Xiangshan County Annals: Volume 1[M]. Beijing: Local Records Publishing House, 2020: 405-407.

    Google Scholar

    [32] Laporte-Fauret Q, Marieu V, Castelle B, et al. Low-cost UAV for high-resolution and large-scale coastal dune change monitoring using photogrammetry[J]. Journal of Marine Science and Engineering, 2019, 7(3):63. doi: 10.3390/jmse7030063

    CrossRef Google Scholar

    [33] Jaud M, Delacourt C, Le Dantec N, et al. Diachronic UAV photogrammetry of a sandy beach in Brittany (France) for a long-term coastal observatory[J]. ISPRS International Journal of Geo-Information, 2019, 8(6):267. doi: 10.3390/ijgi8060267

    CrossRef Google Scholar

    [34] Mancini F, Dubbini M, Gattelli M, et al. Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: the structure from motion approach on coastal environments[J]. Remote Sensing, 2013, 5(12):6880-6898. doi: 10.3390/rs5126880

    CrossRef Google Scholar

    [35] Fonstad M A, Dietrich J T, Courville B C, et al. Topographic structure from motion: a new development in photogrammetric measurement[J]. Earth Surface Processes and Landforms, 2013, 38(4):421-430. doi: 10.1002/esp.3366

    CrossRef Google Scholar

    [36] Jaud M, Grasso F, Le Dantec N, et al. Potential of UAVs for monitoring mudflat morphodynamics (application to the seine estuary, France)[J]. ISPRS International Journal of Geo-Information, 2016, 5(4):50. doi: 10.3390/ijgi5040050

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(6)

Article Metrics

Article views(965) PDF downloads(122) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint