2023 Vol. 43, No. 6
Article Contents

ZHUANG Jiaquan, LUO Ke, PENG Yun, FAN Yiyang, LIN Hangjie, WANG Yunwei, YU Qian. Geomorphological survey of intertidal oyster reefs based on UAV Structure-from-Motion photogrammetry[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 45-54. doi: 10.16562/j.cnki.0256-1492.2023080301
Citation: ZHUANG Jiaquan, LUO Ke, PENG Yun, FAN Yiyang, LIN Hangjie, WANG Yunwei, YU Qian. Geomorphological survey of intertidal oyster reefs based on UAV Structure-from-Motion photogrammetry[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 45-54. doi: 10.16562/j.cnki.0256-1492.2023080301

Geomorphological survey of intertidal oyster reefs based on UAV Structure-from-Motion photogrammetry

More Information
  • Oyster reefs is an important coastal morphological system, the spatial distribution pattern of the reefs profoundly influences the surrounding hydrodynamic and sedimentary processes, which in turn affects the evolution of oyster reefs. The Liyashan oyster reef in Haimen, Jiangsu, is an important and rare ecosystem in the Chinese coast; however, it has been seriously degraded by sediment cover and human fishing in recent years. A geomorphological observation of the oyster reefs in Liyashan was carried out using an unmanned aerial vehicle (UAV). Based on the SfM (Structure from Motion) photogrammetry, high-resolution three-dimensional models of the aerial photography region were reconstructed, including orthophoto and digital elevation model (DEM). Then, the visual interpretation and profile analysis on the reconstructed models were conducted. Results show that the oyster reefs are mainly composed of three types in distribution shape: string, patch, and ring. The “string” oyster reef ridges are generally oriented north-south, likely were formed by the degradation of “ring” reefs or self-organization process of oysters. The elevation differences within the surveyed area could reach more than 5 m, the highest elevation was 0.5 m (1985 national elevation), while the lowest elevation was −4.7 m. The reefs are still in a degraded state, and the evolutionary process is mainly as follows: potholes appear on the surfaces of the reefs → further expansion and extension of potholes → formation of grooves→ segmentation and disintegration of the reefs, accompanied by sedimentary burial of the reefs. This study shows that the UAV SfM technique can efficiently obtain geomorphological data of oyster reefs, which provides a strong support for studying the evolution of oyster reefs.

  • 加载中
  • [1] Coen L D, Luckenbach M W. Developing success criteria and goals for evaluating oyster reef restoration: ecological function or resource exploitation?[J]. Ecological Engineering, 2000, 15(3-4):323-343. doi: 10.1016/S0925-8574(00)00084-7

    CrossRef Google Scholar

    [2] Chambers L G, Gaspar S A, Pilato C J, et al. How well do restored intertidal oyster reefs support key biogeochemical properties in a coastal lagoon?[J]. Estuaries and Coasts, 2018, 41(3):784-799. doi: 10.1007/s12237-017-0311-5

    CrossRef Google Scholar

    [3] Cressman K A, Posey M H, Mallin M A, et al. Effects of oyster reefs on water quality in a tidal creek estuary[J]. Journal of Shellfish Research, 2003, 22(3):753-762.

    Google Scholar

    [4] Piazza B P, Banks P D, La Peyre M K. The potential for created oyster shell reefs as a sustainable shoreline protection strategy in Louisiana[J]. Restoration Ecology, 2005, 13(3):499-506. doi: 10.1111/j.1526-100X.2005.00062.x

    CrossRef Google Scholar

    [5] Scyphers S B, Powers S P, Heck Jr K L, et al. Oyster reefs as natural breakwaters mitigate shoreline loss and facilitate fisheries[J]. PLoS One, 2011, 6(8):e22396. doi: 10.1371/journal.pone.0022396

    CrossRef Google Scholar

    [6] Quan W M, Zhu J X, Ni Y, et al. Faunal utilization of constructed intertidal oyster ( Crassostrea rivularis) reef in the Yangtze River estuary, China[J]. Ecological Engineering, 2009, 35(10):1466-1475. doi: 10.1016/j.ecoleng.2009.06.001

    CrossRef Google Scholar

    [7] Beck M W, Brumbaugh R D, Airoldi L, et al. Oyster reefs at risk and recommendations for conservation, restoration, and management[J]. BioScience, 2011, 61(2):107-116. doi: 10.1525/bio.2011.61.2.5

    CrossRef Google Scholar

    [8] Brumbaugh R D, Coen L D. Contemporary approaches for small-scale oyster reef restoration to address substrate versus recruitment limitation: a review and comments relevant for the Olympia oyster, Ostrea lurida Carpenter 1864[J]. Journal of Shellfish Research, 2009, 28(1):147-161. doi: 10.2983/035.028.0105

    CrossRef Google Scholar

    [9] Jackson J B C, Kirby M X, Berger W H, et al. Historical overfishing and the recent collapse of coastal ecosystems[J]. Science, 2001, 293(5530):629-637. doi: 10.1126/science.1059199

    CrossRef Google Scholar

    [10] 张忍顺. 江苏小庙洪牡蛎礁的地貌-沉积特征[J]. 海洋与湖沼, 2004, 35(1):1-7 doi: 10.3321/j.issn:0029-814X.2004.01.001

    CrossRef Google Scholar

    ZHANG Renshun. The geomorphology-sedimentology character of oyster reef in Xiaomiaohong tidal channel, Jiangsu province[J]. Oceanologia et Limnologia Sinica, 2004, 35(1):1-7. doi: 10.3321/j.issn:0029-814X.2004.01.001

    CrossRef Google Scholar

    [11] 张忍顺, 王艳红, 张正龙, 等. 江苏小庙洪牡蛎礁的地貌特征及演化[J]. 海洋与湖沼, 2007, 38(3):259-265 doi: 10.3321/j.issn:0029-814X.2007.03.012

    CrossRef Google Scholar

    ZHANG Renshun, WANG Yanhong, ZHANG Zhenglong, et al. Geomorphology and evolution of the Xiaomiaohong oyster reef off Jiangsu coast, China[J]. Oceanologia et Limnologia Sinica, 2007, 38(3):259-265. doi: 10.3321/j.issn:0029-814X.2007.03.012

    CrossRef Google Scholar

    [12] Colden A M, Fall K A, Cartwright G M, et al. Sediment suspension and deposition across restored oyster reefs of varying orientation to flow: implications for restoration[J]. Estuaries and Coasts, 2016, 39(5):1435-1448. doi: 10.1007/s12237-016-0096-y

    CrossRef Google Scholar

    [13] Grave C. Investigations for the Promotion of the Oyster Industry of North Carolina[M]. Washington: US Government Printing Office, 1904.

    Google Scholar

    [14] Kennedy V S, Sanford L P. The morphology and physical oceanography of unexploited oyster reefs in North America[M]//Luckenbach M W, Mann R, Wesson J A. Oyster Reef Habitat Restoration: A Synopsis and Synthesis of Approaches. Gloucester Point: VIMS Press, 1999: 25-46.

    Google Scholar

    [15] Smith G F, Roach E B, Bruce D G. The location, composition, and origin of oyster bars in mesohaline Chesapeake Bay[J]. Estuarine, Coastal and Shelf Science, 2003, 56(2):391-409. doi: 10.1016/S0272-7714(02)00191-9

    CrossRef Google Scholar

    [16] Walles B, Salvador de Paiva J, van Prooijen B C, et al. The ecosystem engineer Crassostrea gigas affects tidal flat morphology beyond the boundary of their reef structures[J]. Estuaries and Coasts, 2015, 38(3):941-950. doi: 10.1007/s12237-014-9860-z

    CrossRef Google Scholar

    [17] Woods H, HARGIS W J, Hershner C H, et al. Disappearance of the natural emergent 3-dimensional oyster reef system of the James River, Virginia, 1871-1948[J]. Journal of Shellfish Research, 2005, 24(1):139-142. doi: 10.2983/0730-8000(2005)24[139:DOTNED]2.0.CO;2

    CrossRef Google Scholar

    [18] Lenihan H S. Physical–biological coupling on oyster reefs: how habitat structure influences individual performance[J]. Ecological Monographs, 1999, 69(3):251-275.

    Google Scholar

    [19] Koppel J, Rietkerk M, Dankers N, et al. Scale-dependent feedback and regular spatial patterns in young mussel beds[J]. The American Naturalist, 2005, 165(3):E66-E77. doi: 10.1086/428362

    CrossRef Google Scholar

    [20] van de Koppel J, Bouma T J, Herman P M J. The influence of local-and landscape-scale processes on spatial self-organization in estuarine ecosystems[J]. Journal of Experimental Biology, 2012, 215(6):962-967. doi: 10.1242/jeb.060467

    CrossRef Google Scholar

    [21] Ysebaert T, Walles B, Haner J, et al. Habitat modification and coastal protection by ecosystem-engineering reef-building bivalves[M]//Smaal A C, Ferreira J G, Grant J, et al. Goods and Services of Marine Bivalves. Cham: Springer, 2019: 253-273.

    Google Scholar

    [22] Grabowski J H, Brumbaugh R D, Conrad R F, et al. Economic valuation of ecosystem services provided by oyster reefs[J]. Bioscience, 2012, 62(10):900-909. doi: 10.1525/bio.2012.62.10.10

    CrossRef Google Scholar

    [23] Zu Ermgassen P S E, Spalding M D, Grizzle R E, et al. Quantifying the loss of a marine ecosystem service: filtration by the eastern oyster in US estuaries[J]. Estuaries and Coasts, 2013, 36(1):36-43. doi: 10.1007/s12237-012-9559-y

    CrossRef Google Scholar

    [24] Baggett L P, Powers S P, Brumbaugh R D, et al. Guidelines for evaluating performance of oyster habitat restoration[J]. Restoration Ecology, 2015, 23(6):737-745. doi: 10.1111/rec.12262

    CrossRef Google Scholar

    [25] Barillé L, Prou J, Héral M, et al. Effects of high natural seston concentrations on the feeding, selection, and absorption of the oyster Crassostrea gigas (Thunberg)[J]. Journal of Experimental Marine Biology and Ecology, 1997, 212(2):149-172. doi: 10.1016/S0022-0981(96)02756-6

    CrossRef Google Scholar

    [26] Gernez P, Barillé L, Lerouxel A, et al. Remote sensing of suspended particulate matter in turbid oyster‐farming ecosystems[J]. Journal of Geophysical Research:Oceans, 2014, 119(10):7277-7294. doi: 10.1002/2014JC010055

    CrossRef Google Scholar

    [27] Huang W R, Hagen S C, Wang D B, et al. Suspended sediment projections in Apalachicola Bay in response to altered river flow and sediment loads under climate change and sea level rise[J]. Earth's Future, 2016, 4(10):428-439. doi: 10.1002/2016EF000384

    CrossRef Google Scholar

    [28] Windle A E, Poulin S K, Johnston D W, et al. Rapid and accurate monitoring of intertidal Oyster Reef Habitat using unoccupied aircraft systems and structure from motion[J]. Remote Sensing, 2019, 11(20):2394. doi: 10.3390/rs11202394

    CrossRef Google Scholar

    [29] Baggett L P, Powers S P, Brumbaugh R, et al. Oyster Habitat Restoration Monitoring and Assessment Handbook[M]. Arlington: The Nature Conservancy, 2014.

    Google Scholar

    [30] Power A, Corley B, Atkinson D, et al. A caution against interpreting and quantifying oyster habitat loss from historical surveys[J]. Journal of Shellfish Research, 2010, 29(4):927-936. doi: 10.2983/035.029.0425

    CrossRef Google Scholar

    [31] Schill S R, Porter D E, Coen L D, et al. Development of an automated mapping technique for monitoring and managing shellfish distributions. A final report submitted to: NOAA/UNH cooperative institute for coastal and estuarine environmental technology (CICEET)[R]. Port Norris, 2006: 91.

    Google Scholar

    [32] Rodriguez A B, Fodrie F J, Ridge J T, et al. Oyster reefs can outpace sea-level rise[J]. Nature Climate Change, 2014, 4(6):493-497. doi: 10.1038/nclimate2216

    CrossRef Google Scholar

    [33] Mancini F, Dubbini M, Gattelli M, et al. Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: the structure from motion approach on coastal environments[J]. Remote Sensing, 2013, 5(12):6880-6898. doi: 10.3390/rs5126880

    CrossRef Google Scholar

    [34] 全为民, 周为峰, 马春艳, 等. 江苏海门蛎岈山牡蛎礁生态现状评价[J]. 生态学报, 2016, 36(23):7749-7757

    Google Scholar

    QUAN Weimin, ZHOU Weifeng, MA Chunyan, et al. Ecological status of a natural intertidal oyster reef in Haimen County, Jiangsu province[J]. Acta Ecologica Sinica, 2016, 36(23):7749-7757.

    Google Scholar

    [35] Lin H J, Yu Q, Wang Y W, et al. Identification, extraction and interpretation of Multi-Period variations of coastal suspended sediment concentration based on unevenly spaced observations[J]. Marine Geology, 2022, 445:106732. doi: 10.1016/j.margeo.2022.106732

    CrossRef Google Scholar

    [36] Lin H J, Yu Q, Du Z Y, et al. Geomorphology and sediment dynamics of the Liyashan oyster reefs, Jiangsu Coast, China[J]. Acta Oceanologica Sinica, 2021, 40(10):118-128. doi: 10.1007/s13131-021-1866-3

    CrossRef Google Scholar

    [37] 全为民, 安传光, 马春艳, 等. 江苏小庙洪牡蛎礁大型底栖动物多样性及群落结构[J]. 海洋与湖沼, 2012, 43(5):992-1000 doi: 10.11693/hyhz201205017017

    CrossRef Google Scholar

    QUAN Weimin, AN Chuanguang, MA Chunyan, et al. Biodiversity and community structure of benthic macroinvertebrates on the Xiaomiaohong oyster reef in Jiangsu province, China[J]. Oceanologia et Limnologia Sinica, 2012, 43(5):992-1000. doi: 10.11693/hyhz201205017017

    CrossRef Google Scholar

    [38] 任美锷, 丁方叔, 万延森, 等. 江苏省海岸带和海涂资源综合调查报告[M]. 北京: 海洋出版社, 1986

    Google Scholar

    REN Mei’e, DING Fangshu, WANG Yansen, et al. Comprehensive Survey of Coastal Zone and Intertidal Resources in Jiangsu Province: Report[M]. Beijing: China Ocean Press, 1986.

    Google Scholar

    [39] Mian O, Lutes J, Lipa G, et al. Direct georeferencing on small unmanned aerial platforms for improved reliability and accuracy of mapping without the need for ground control points[C]//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Toronto, 2015: 397-402.

    Google Scholar

    [40] Brunier G, Michaud E, Fleury J, et al. Assessing the relationship between macro-faunal burrowing activity and mudflat geomorphology from UAV-based Structure-from-Motion photogrammetry[J]. Remote Sensing of Environment, 2020, 241:111717. doi: 10.1016/j.rse.2020.111717

    CrossRef Google Scholar

    [41] Taddia Y, Pellegrinelli A, Corbau C, et al. High-resolution monitoring of tidal systems using UAV: a case study on Poplar Island, MD (USA)[J]. Remote Sensing, 2021, 13(7):1364. doi: 10.3390/rs13071364

    CrossRef Google Scholar

    [42] Jaud M, Grasso F, Le Dantec N, et al. Potential of UAVs for monitoring mudflat morphodynamics (Application to the seine estuary, France)[J]. ISPRS International Journal of Geo-Information, 2016, 5(4):50. doi: 10.3390/ijgi5040050

    CrossRef Google Scholar

    [43] Sanz-Ablanedo E, Chandler J H, Rodríguez-Pérez J R, et al. Accuracy of unmanned aerial vehicle (UAV) and SfM photogrammetry survey as a function of the number and location of ground control points used[J]. Remote Sensing, 2018, 10(10):1606. doi: 10.3390/rs10101606

    CrossRef Google Scholar

    [44] Ridge J T, Gray P C, Windle A E, et al. Deep learning for coastal resource conservation: automating detection of shellfish reefs[J]. Remote Sensing in Ecology and Conservation, 2020, 6(4):431-440. doi: 10.1002/rse2.134

    CrossRef Google Scholar

    [45] Morris R L, La Peyre M K, Webb B M, et al. Large‐scale variation in wave attenuation of oyster reef living shorelines and the influence of inundation duration[J]. Ecological Applications, 2021, 31(6):e02382. doi: 10.1002/eap.2382

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(972) PDF downloads(59) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint