2023 Vol. 39, No. 12
Article Contents

FU Quanyou, WU Guanghai, HAN Chenhua, GAO Farong. An overview on the environmental impact and protection measures of deep-sea polymetallic sulphide mining[J]. Marine Geology Frontiers, 2023, 39(12): 1-11. doi: 10.16028/j.1009-2722.2022.266
Citation: FU Quanyou, WU Guanghai, HAN Chenhua, GAO Farong. An overview on the environmental impact and protection measures of deep-sea polymetallic sulphide mining[J]. Marine Geology Frontiers, 2023, 39(12): 1-11. doi: 10.16028/j.1009-2722.2022.266

An overview on the environmental impact and protection measures of deep-sea polymetallic sulphide mining

More Information
  • The exploitation of deep-sea mineral resources and its environmental protection have become a research hotspot in recent years. The deep-sea environment is extremely complex and human’s understanding of deep-sea organisms and their ecosystems are still very limited, while deep-sea mining will inevitably cause damage to the marine ecological environment. If the research on the impact of mining on the environment is not strengthened and relevant protection measures are formulated, the damage to the marine environment from deep-sea mining would be immeasurable in the future. Therefore, previous research results on the origin of deep-sea mining, the environment of polymetallic sulfide mining areas, the development of deep-sea mining technology, the impact of mining environment, and protection measures were studied systematically, and puts forward the development direction of deep-sea mining environmental impact assessment, so as to provide a reference for the monitoring and protection of deep-sea mining environment in the future.

  • 加载中
  • [1] United States, Congress, Senate, Committee On Interior And Insular Affairs, Subcommittee On Minerals, Materials, And Fuels. Current developments in deep seabed mining: Hearing before the Subcommittee on Minerals, Materials, and Fuels of the Committee on Interior and Insular Affairs[M]. University of Michigan Library, 1975: 1-3.

    Google Scholar

    [2] MURPHY J M. Deep ocean mining:beginning of a new era[J]. Case Western Reserve Journal of International Law,1976,8(1):46.

    Google Scholar

    [3] DUNN D C,VAN DOVER C L,ETTER R J,et al. A strategy for the conservation of biodiversity on mid-ocean ridges from deep-sea mining[J]. Science Advances,2018,4(7):4313. doi: 10.1126/sciadv.aar4313

    CrossRef Google Scholar

    [4] International Seabed Authority (ISA). Environmental Management Plan for the Clarion-Clipperton Zone(ISBA17/LTC/7)[EB/OL]. [2022-9-10]. https://isa.org.jm/files/files/documents/isba-17ltc-7_1.pdf.

    Google Scholar

    [5] JOHAN F. Solwara 1 Deep Sea Mining Project: [R/OL]. Bank Track. 2016.

    Google Scholar

    [6] SHARMA R. Deep-sea mining: resource potential, technical and environmental considerations[M]. Cham: Springer International Publishing, 2017: 3-21.

    Google Scholar

    [7] VON DAMM K L. Evolution of the hydrothermal system at East Pacific Rise 9°50'N:Geochemical evidence for changes in the upper oceanic crust[J]. Washington DC American Geophysical Union Geophysical Monograph Series,2004,148:285-304.

    Google Scholar

    [8] HERZIG P M. Economic potential of sea–floor massive sulphide deposits:ancient and modern[J]. Philosophical Transactions of the Royal Society of London,1999,357(1753):861-875. doi: 10.1098/rsta.1999.0355

    CrossRef Google Scholar

    [9] BAKER M,GERMAN C. Going for gold! who will win the race to exploit ores from the deep?[J]. Ocean Challenge,2008,16(1):10-17.

    Google Scholar

    [10] HANNINGTON M D, JAMIESON J, PETERSEN S. Seafloor massive sulfide deposits: continuing efforts toward a global estimate of seafloor massive sulfides[C]//OCEANS 2015-Genova. Genova, Italy: IEEE, 2015: 1-3.

    Google Scholar

    [11] MONECKE T,PETERSEN S,HANNINGTON M D,et al. The minor element endowment of modern sea-floor massive sulfides and comparison with deposits hosted in ancient volcanic successions[J]. Society of Economic Geologists,2016,18:245-306.

    Google Scholar

    [12] MURTON B. Seafloor mining:the future or just another pipe dream?[J]. Underwater Technology,2013,31(2):53-54. doi: 10.3723/ut.31.053

    CrossRef Google Scholar

    [13] VAN DOVER C L. The ecology of hydrothermal vents[M]. Princeton New Jersey: Princeton University Press, 2000: 424.

    Google Scholar

    [14] GRASSLE J F. Hydrothermal vent animals:distribution and biology[J]. Science,1985,229(4715):713-717. doi: 10.1126/science.229.4715.713

    CrossRef Google Scholar

    [15] RINKE C,LEE R W. Pathways,activities and thermal stability of anaerobic and aerobic enzymes in thermophilic vent paralvinellid worms[J]. Marine Ecology Progress Series,2009,382:99-112. doi: 10.3354/meps07980

    CrossRef Google Scholar

    [16] BOSCHEN R E,ROWDEN A A,CLARK M R,et al. Megabenthic assemblage structure on three New Zealand seamounts:implications for seafloor massive sulfide mining[J]. Marine Ecology Progress Series,2015,523:1-14. doi: 10.3354/meps11239

    CrossRef Google Scholar

    [17] GALKIN S V. Megafauna associated with hydrothermal vents in the Manus Back-Arc Basin (Bismarck Sea)[J]. Marine Geology,1997,142(1/4):197-206. doi: 10.1016/S0025-3227(97)00051-0

    CrossRef Google Scholar

    [18] FLORES G E,WAGNER I D,LIU Y,et al. Distribution,abundance,and diversity patterns of the thermoacidophilic “deep-sea hydrothermal vent euryarchaeota 2”[J]. Frontiers in Microbiology,2012,3:47.

    Google Scholar

    [19] VAN DOVER C L. Inactive sulfide ecosystems in the deep sea:a review[J]. Frontiers in Marine Science,2019,6:461. doi: 10.3389/fmars.2019.00461

    CrossRef Google Scholar

    [20] BOSCHEN R E,ROWDEN A A,CLARK M R,et al. Mining of deep-sea seafloor massive sulfides:a review of the deposits,their benthic communities,impacts from mining,regulatory frameworks and management strategies[J]. Ocean and Coastal Management,2013,84:54-67.

    Google Scholar

    [21] GOLLNER S,MILJUTINA M,BRIGHT M. Nematode succession at deep-sea hydrothermal vents after a recent volcanic eruption with the description of two dominant species[J]. Organisms Diversity and Evolution,2013,13(3):349-371.

    Google Scholar

    [22] LEVIN L A,MENDOZA G F,KONOTCHICK T,et al. Macrobenthos community structure and trophic relationships within active and inactive Pacific hydrothermal sediments[J]. Deep Sea Research Part II:Topical Studies in Oceanography,2009,56(19/20):1632-1648. doi: 10.1016/j.dsr2.2009.05.010

    CrossRef Google Scholar

    [23] ERICKSON K L,MACKO S A,VAN DOVER C L. Evidence for a chemoautotrophically based food web at inactive hydrothermal vents (Manus Basin)[J]. Deep Sea Research Part II:Topical Studies in Oceanography,2009,56(19/20):1577-1585. doi: 10.1016/j.dsr2.2009.05.002

    CrossRef Google Scholar

    [24] 杨建民,刘磊,吕海宁,等. 我国深海矿产资源开发装备研发现状与展望[J]. 中国工程科学,2020,22(6):1-9.

    Google Scholar

    [25] 刘磊. 深海采矿水力提升固液两相流动力学特性研究[D]. 上海: 上海交通大学, 2019.

    Google Scholar

    [26] 李艳,梁科森,李皓. 深海多金属硫化物开采技术[J]. 中国有色金属学报,2021,31(10):2889-2901.

    Google Scholar

    [27] International Seabed Authority (ISA). Polymetallic nodule mining technology-current trends and challenges ahead[M]. International Seabed Authority, 2008: 54-81.

    Google Scholar

    [28] THIEL H. From MESEDA to DISCOL:a new approach to deep-sea mining risk assessments[J]. Marine Mining,1991,10(4):369-386.

    Google Scholar

    [29] YAMAKADO N, HANDA K, USAMI T. Model tests on continuous line bucket mining system[C]. Offshore Technology Conference, OnePetro, 1978.

    Google Scholar

    [30] MASUDA Y, CRUICKSHANK M J, MERO J L. Continuous bucket line dredging at 12000 feet[C]. Dallas: Offshore Technology Conference, 1971: 873-841.

    Google Scholar

    [31] LEMERCIER P,MARCHAL P,MOREAU J P,et al. Submarine vehicle for dredging and raising minerals resting on the sea bed at great depths[J]. United States Patent,1982,9:21-56.

    Google Scholar

    [32] BROCKETT F H, HUIZINGH J P, MCFARLANE J A R. Updated analysis of the capital and operating costs of a polymetallic nodule deep ocean mining system developed in the 1970s[J]. Polymetallic Nodule Mining Technology: Current Trends and Challenges Ahead, 2008: 46-65.

    Google Scholar

    [33] 田先德,杨锦坤,韩春花,等. 国际海域矿产资源勘探与开采技术现状与展望[J]. 海洋信息,2021,36(2):28-32. doi: 10.19661/j.cnki.mi.2021.02.005

    CrossRef Google Scholar

    [34] STEINER R. Independent review of the environmental impact statement for the proposed nautilus minerals Solwara 1 seabed mining project, Papua New Guinea[J]. Bismarck-Solomon Indigenous Peoples Council. 2009.

    Google Scholar

    [35] FAIRLEY P. Robot miners of the briny deep[J]. IEEE Spectrum,2016,1(53):44-47.

    Google Scholar

    [36] 康娅娟,刘少军. 深海多金属结核开采技术发展历程及展望[J]. 中国有色金属学报,2021,31(10):2848-2859.

    Google Scholar

    [37] SNELGROVE P V R, SMITH C R. A riot of species in an environmental calm: the paradox of the species-rich deep-sea floor[M]. Oceanography and Marine Biology, 2002: 319-320.

    Google Scholar

    [38] BOOMSMA W, WARNAARS J. Blue mining[C]. IEEE Underwater Technology (UT), 2015: 1-4.

    Google Scholar

    [39] SPAGNOLI G,MIEDEMA S A,Herrmann C,et al. Preliminary design of a trench cutter system for deep-sea mining applications under hyperbaric conditions[J]. IEEE Journal of Oceanic Engineering,2015,41(4):930-943.

    Google Scholar

    [40] OKAMOTO N, SHIOKAWA S, KAWANO S, et al. Current status of Japan's activities for deep-sea commercial mining campaign[C]//OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO). Kobe, Japan: IEEE, 2018: 1-7.

    Google Scholar

    [41] MILLER K A,THOMPSON K F,JOHNSTON P,et al. An overview of seabed mining including the current state of development,environmental impacts,and knowledge gaps[J]. Frontiers in Marine Science,2018,4:418. doi: 10.3389/fmars.2017.00418

    CrossRef Google Scholar

    [42] USUI A,SOMEYA M. Distribution and composition of marine hydrogenetic and hydrothermal manganese deposits in the northwest Pacific[J]. Geological Society,London,Special Publications,1997,119(1):177-198. doi: 10.1144/GSL.SP.1997.119.01.12

    CrossRef Google Scholar

    [43] GILLARD B,PURKIANI K,CHATZIEVANGELOU D,et al. Physical and hydrodynamic properties of deep sea mining-generated,abyssal sediment plumes in the Clarion Clipperton Fracture Zone (eastern-central Pacific)[J]. Elementa:Science of the Anthropocene,2019,7(1):1-14.

    Google Scholar

    [44] SCHRIEVER G, KOSCHINSKY A, BLUHM H, et al. Cruise Report ATESEPP: Auswirkungen technischer Eingriffe in das Ökosystem der Tiefsee im Sued-Ost-Pazifik vor Peru (Impacts of potential technical interventions on the deep-sea ecosystem of the southeast Pacific off Peru): Sonne cruise 106: January 1-March 9, 1996, Balboa/Panama-Balboa/Panama[M]. Institut für Hydrobiologie und Fischereiwissenschaft, 1996.

    Google Scholar

    [45] BILENKER L D,ROMANO G Y,MCKIBBEN M A. Kinetics of sulfide mineral oxidation in seawater:implications for acid generation during in situ mining of seafloor hydrothermal vent deposits[J]. Applied geochemistry,2016,75:20-31. doi: 10.1016/j.apgeochem.2016.10.010

    CrossRef Google Scholar

    [46] ROLINSKI S,SEGSCHNEIDER J,SÜNDERMANN J. Long-term propagation of tailings from deep-sea mining under variable conditions by means of numerical simulations[J]. Oceanography,2001,48(17/18):3469-3485.

    Google Scholar

    [47] BURNS R E. Assessment of environmental effects of deep ocean mining of manganese nodules[J]. Helgolä nder Meeresuntersuchungen,1980,33(1):433-442.

    Google Scholar

    [48] LOBEL P S, KAATZ I M, RICE A N. Acoustical behavior of coral reef fishes[J]. Marine Ecology Progress Series, 2010: 307-386.

    Google Scholar

    [49] LECCHINI D,BERTUCCI F,GACHE C,et al. Boat noise prevents soundscape-based habitat selection by coral planulae[J]. Scientific Reports,2018,8(1):1-9.

    Google Scholar

    [50] LIN T H,CHEN C,WATANABE H K,et al. Using soundscapes to assess deep-sea benthic ecosystems[J]. Trends in Ecology and Evolution,2019,34(12):1066-1069.

    Google Scholar

    [51] JOHN S P. Ocean Floor Mining[M]. USA: Noyes Data Corp., 1975: 201.

    Google Scholar

    [52] MARTINS I,GOULART J,MARTINS E,et al. Physiological impacts of acute Cu exposure on deep-sea vent mussel Bathymodiolus azoricus under a deep-sea mining activity scenario[J]. Aquatic Toxicology,2017,193:40-49. doi: 10.1016/j.aquatox.2017.10.004

    CrossRef Google Scholar

    [53] VAN DER GRIENT J M A,DRAZEN J C. Potential spatial intersection between high-seas fisheries and deep-sea mining in international waters[J]. Marine Policy,2021,129:104564. doi: 10.1016/j.marpol.2021.104564

    CrossRef Google Scholar

    [54] INGOLE B S, ANSARI Z A, MATONDKAR S G P, et al. Immediate response of meio and macrobenthos to disturbance caused by a benthic disturber[C]. Third ISOPE Ocean Mining Symposium, OnePetro, 1999.

    Google Scholar

    [55] RODRIGUES N,SHARMA R,NATH B N. Impact of benthic disturbance on megafauna in Central Indian Basin[J]. Oceanography,2001,48(16):3411-3426.

    Google Scholar

    [56] TKATCHENKO G, RADZIEJEWSKA T, STOYANOVA V, et al. Benthic impact experiment in the IOM pioneer area: testing for effects of deep-sea disturbance[C]. Int Seminar on Deep Sea-bed Mining Tech, China Ocean Mineral Resources R&D Assoc, Beijing, 1996.

    Google Scholar

    [57] RAGHUKUMAR C,BHARATHI P A L,ANSARI Z A,et al. Bacterial standing stock,meiofauna and sediment–nutrient characteristics:indicators of benthic disturbance in the Central Indian Basin[J]. Oceanography,2001,48(16):3381-3399.

    Google Scholar

    [58] FOELL E J, SCHRIEVER G, BLUHM H, et al. Disturbance and recolonization experiment in the abyssal South Pacific Ocean (diseol): an update[C]. Offshore Technology Conference, OnePetro, 1992: 25–34.

    Google Scholar

    [59] SHARMA R,NATH B N,PARTHIBAN G,et al. Sediment redistribution during simulated benthic disturbance and its implications on deep seabed mining[J]. Oceanography,2001,48(16):3363-3380.

    Google Scholar

    [60] PHILLIPS B T. Beyond the vent:new perspectives on hydrothermal plumes and pelagic biology[J]. Oceanography,2017,137:480-485.

    Google Scholar

    [61] 高岩. 国际海底区域环境管理计划进程、挑战与中国参与[J]. 环境保护,2021,49(23):71-76. doi: 10.3969/j.issn.0253-9705.2021.23.hjbh202123017

    CrossRef Google Scholar

    [62] SHARMA R. Deep-sea mining:Economic,technical,technological,and environmental considerations for sustainable development[J]. Marine Technology Society Journal,2011,45:28-41. doi: 10.4031/MTSJ.45.5.2

    CrossRef Google Scholar

    [63] Environmental Protection Authority of New Zealand. Trans-Tasman Resources Ltd Marine Consent Decision[R]. New Zealand Government, 2014.

    Google Scholar

    [64] International Seabed Authority. Standardization of environmental data and information-development of guidelines[C]//Proceedings of the International Seabed Authority’s Workshop. Kingston, Jamaica: International Seabed Authority, 2001.

    Google Scholar

    [65] International Seabed Authority. Regulations on prospecting and exploration for polymetallic sulphides in the area International Seabed Authority[C]//130th Meeting of the Assembly of the International Seabed Authority. Kingston, Jamaica: International Seabed Authority, 2010: 49.

    Google Scholar

    [66] ARDRON J, ARNAUD-HAOND S, Beaudoin Y, et al. Environmental management of deep-sea chemosynthetic ecosystems: justification of and considerations for a spatially based approach[R]. Kingston, Jamaica: International Seabed Authority.

    Google Scholar

    [67] VAN DOVER C L,SMITH C R,ARDRON J,et al. Designating networks of chemosynthetic ecosystem reserves in the deep sea[J]. Marine Policy,2012,36(2):378-381. doi: 10.1016/j.marpol.2011.07.002

    CrossRef Google Scholar

    [68] MOORE T S,MULLAUGH K M,HOLYOKE R R,et al. Marine chemical technology and sensors for marine waters:potentials and limits[J]. Annual Review of Marine Science,2009,1:91-115. doi: 10.1146/annurev.marine.010908.163817

    CrossRef Google Scholar

    [69] QAZI H H,MOHAMMAD A B,AKRAM M. Recent progress in optical chemical sensors[J]. Sensors,2012,12(12):16522-16556. doi: 10.3390/s121216522

    CrossRef Google Scholar

    [70] FENGHUA L,YANGUO L,HAIBIN W,et al. Research progress and development trend of seafloor observation network[J]. Bulletin of Chinese Academy of Sciences (Chinese Version),2019,34(3):321-330.

    Google Scholar

    [71] 贾凌霄,马冰,于洋,等. 基于SWOT分析的深海采矿发展策略研究[J]. 中国矿业,2021,30(7):8. doi: 10.12075/j.issn.1004-4051.2021.07.028

    CrossRef Google Scholar

    [72] ALEYNIK D,INALL M E,DALE A,et al. Impact of remotely generated eddies on plume dispersion at abyssal mining sites in the Pacific[J]. Scientific Reports,2017,7(1):1-14. doi: 10.1038/s41598-016-0028-x

    CrossRef Google Scholar

    [73] NARITA T, OSHIKA J, OKAMOTO N, et al. Summary of environmental impact assessment for mining seafloor massive sulfides in Japan[J]. Journal of Shipping and Ocean Engineering, 2015, 5: 103-114.

    Google Scholar

    [74] SUZUKI K, YOSHIDA K. Mining in hydrothermal vent Fields: predicting and minimizing impacts on ecosystems with the use of a mathematical modeling framework[M]. Environmental Issues of Deep-Sea Mining, 2019: 231-253.

    Google Scholar

    [75] CLARK M R,DURDEN J M,CHRISTIANSEN S. Environmental Impact Assessments for deep-sea mining:can we improve their future effectiveness?[J]. Marine Policy,2020,114:1-9.

    Google Scholar

    [76] LE J T,LEVIN L A,CARSON R T. Incorporating ecosystem services into environmental management of deep-seabed mining[J]. Oceanography,2017,137:486-503.

    Google Scholar

    [77] GROFFMAN P M,BARON J S,BLETT T,et al. Ecological thresholds:the key to successful environmental management or an important concept with no practical application?[J]. Ecosystems,2006,9(1):1-13. doi: 10.1007/s10021-003-0142-z

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(1)

Article Metrics

Article views(1518) PDF downloads(623) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint