Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2023 Vol. 42, No. 3
Article Contents

YANG Mengnan, SUN Han, CAO Hailong, JIA Zenghua, FENG Zhengyuan, ZHENG Lijun, CHEN Nan. Preparation and Application of Biochar-Chitosan Magnetic Composite Adsorbent for Removal of Lead and Copper from Groundwater[J]. Rock and Mineral Analysis, 2023, 42(3): 563-575. doi: 10.15898/j.ykcs.202208230155
Citation: YANG Mengnan, SUN Han, CAO Hailong, JIA Zenghua, FENG Zhengyuan, ZHENG Lijun, CHEN Nan. Preparation and Application of Biochar-Chitosan Magnetic Composite Adsorbent for Removal of Lead and Copper from Groundwater[J]. Rock and Mineral Analysis, 2023, 42(3): 563-575. doi: 10.15898/j.ykcs.202208230155

Preparation and Application of Biochar-Chitosan Magnetic Composite Adsorbent for Removal of Lead and Copper from Groundwater

More Information
  • BACKGROUND

    Wastewater containing heavy metals produced by mining, beneficiation, smelting, forging, processing, transportation, and other industries that has been improperly disposed of, leads to heavy metals entering and polluting the groundwater environment. Heavy metals can be enriched in the human body and participate in the biological cycle. Long-term accumulation of heavy metals in the human body will bring carcinogenic, teratogenic, and mutagenic risks. Adsorption has been of wide concern in the treatment of heavy metals pollution in water, due to the advantages of low operation cost, simple engineering operation and low secondary pollution. Chitosan as a natural organic polysaccharide organic matter, has the characteristics of being environmentally friendly. It contains many nitrogen-containing functional groups that can adsorb metal ions in water. However, the adaptability of chitosan adsorbents to acidic conditions is poor, so the pH value needs to be adjusted in the actual process, which increases the operating cost. Combining biochar with chitosan can not only improve the adsorption capacity of chitosan, but also improve the separation performance of biochar. However, most of the research on chitosan modified biochar concentrate on the single biochar. There are few studies on the modification of biochar from different sources by chitosan, and the interaction between chitosan and biochar is not clear.

    OBJECTIVES

    The aim of this study was to prepare peanut shell biochar-chitosan magnetic composite adsorbent (PSC) and corn cob biochar-chitosan magnetic composite adsorbent (CCC), and to investigate the Pb2+/Cu2+ adsorption properties and mechanisms on PSC and CCC.

    METHODS

    Scanning electron microscope was used to analyze the microstructure of the material, and the material samples were treated with gold spray before photographing. The specific surface area and pore volume of the material were determined using a specific surface area analyzer, and the material was adsorption-desorption tested with nitrogen at -196℃. X-ray diffraction was used to analyze the crystal structure of materials, and the Cu Kα source was used to scan in the range of 10°-80° (2θ). X-ray photoelectron spectrometer was used to analyze the changes of functional groups on the surface of the material, and the radiation (225W, 15mA, 15kV) was carried out by monochromatic Al-Kα. Metal ion content in solution was measured by inductively coupled plasma-optical emission spectrometry.  The adsorption experiments were carried out in a 50mL conical flask and a constant temperature shaker. The oscillation frequency was 150r/min and the reaction time was 12h. After the reaction, the concentrations of Pb2+ and Cu2+ in the solution were determined. Two parallel samples were set up in each group. Different initial pH experiments were used to evaluate the adsorption performance of materials. Kinetic and isothermic models were used to evaluate the adsorption kinetic process of materials and predict the maximum adsorption capacity of materials. Recycling experiments and actual mine groundwater adsorption experiments were used to evaluate the practical application capacity of materials.

    RESULTS

    SEM images of PS and CC showed that there were many pores on the surface of both types of carbon. There were more pores and bulges observed on the surface of CC than PS, indicating that CC had a larger contact area with pollutants than PS. The specific surface area (12.045m2/g) and mean pore diameter (3.614nm) of CC were larger than those of PS (specific surface area was 3.294m2/g and mean pore diameter was 3.067nm), which was consistent with the SEM results. The specific surface area (4.598m2/g) and average pore diameter (3.417nm) was 2.812nm), indicating that the primary structural properties of biochar affected the pore structure of the composites. SEM of CCC and PSC showed that chitosan and biochar were well combined. Compared with previous literature, the biochar-chitosan composite material in this study preserves the original structure of biochar to the greatest extent, and makes the chitosan evenly coated on the surface of biochar. The results BET showed that the primary structural properties of the biochar affected the physical properties of the modified materials. The XRD results showed that Fe3O4 was successfully embedded into the composite material. Three pH values (4, 7 and 10) were selected to evaluate the swelling properties of the materials. The results showed that the swelling ratios of the two materials were similar under the three pH conditions, and neither of them was more than 100.0%, which was due to the biochar as a carrier having a good supporting effect. Compared with chitosan/kiwifruit branch biochar adsorbent, the two adsorbents in this study showed relatively stable adsorption properties in the pH range of 4-7, indicating that the adsorbents had a wider range of pH value application.  The effect of the initial pH on the adsorption was tested. As the initial pH value increased from 3 to 7, the adsorption capacity and removal efficiency of the material increased. The positive charge of the adsorbent surface also decreased, which reduced the electrostatic repulsion of Pb2+ and Cu2+ between the material surface and the solution, and increased the electrostatic attraction between the material surface and Pb2+ and Cu2+. The increasing electrostatic attraction was beneficial to the adsorption of Pb2+ and Cu2+. When PSC and CCC adsorbed Pb2+, the pseudo-first-order kinetic model could better describe the adsorption process than the pseudo-second-order kinetic model, indicating that physical adsorption played a dominant role in the adsorption of Pb2+ by PSC and CCC. Pseudo-second-order kinetics can better fit the Cu2+ adsorption by PSC and CCC than pseudo-second-order kinetic model, indicating that chemisorption dominates the adsorption process of Cu2+ by PSC and CCC. The Langmuir isotherm adsorption model can better describe the adsorption process of Pb2+ and Cu2+ than Freundlich isotherm adsorption model, indicating that the adsorption process is monolayer adsorption.  The EDTA-2Na was used as the desorption agent of chitosan composite, the removal efficiencies of Pb2+ and Cu2+ were still above 85% after five cycles, which indicated that the two adsorbents in this study had excellent stability. PSC and CCC were the low-cost and effective adsorption materials. Groundwater of an acid mine was taken from a mining area in Dongshan District, Dafan Mountain, Anhui Province. The groundwater samples contained large amounts of metal ions, such as As, Ca, Cd, Cu, Fe, Mn, Na and Ni, the corresponding concentrations were 18.200g/L, 40.541mg/L, 3.800g/L, 13.300mg/L, 215.00mg/L, 510.00g/L, 81.694mg/L and 87.000g/L, respectively. 0.45μm filter membrane was used to remove particulate impurities from the water before adsorption. CCC was used to treat the heavy metal polluted groundwater, and the results showed that CCC has a good removal ability on a variety of metal ions in groundwater such as Cu2+, Cd2+, and Fe3+. The Cu2+ concentration in the treated water can reach the Grade IV water standard of the “Groundwater Quality Standard”.  The pH results showed that the removal mechanisms of Pb2+ and Cu2+ by PSC and CCC mainly included electrostatic attraction. The functional groups of adsorbents before and after adsorption were analyzed through X-ray photoelectron spectroscopy (XPS). The results of XPS showed that complexation was another removal mechanism. The nitrogen (—NH) of pyrroles, amino of chitosan (—NH2), and C=N were the main functional groups, which were responsible for the complexation with Pb2+ and Cu2+.

    CONCLUSIONS

    The preparation method of the materials in this study can effectively improve the adaptability of chitosan materials under different pH conditions. The adsorbents developed in this study can effectively remove heavy metals from groundwater and have a good application potential.

  • 加载中
  • [1] Feng Z Y,Chen N,Liu T,et al. KHCO3 activated biochar supporting MgO for Pb(Ⅱ) and Cd(Ⅱ) adsorption from water:Experimental study and DFT calculation analysis[J]. Journal of Hazardous Materials, 2022, 426:128059. doi: 10.1016/j.jhazmat.2021.128059

    CrossRef Google Scholar

    [2] Yang G X,Jiang H. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater[J]. Water Research, 2014, 48:396−405. doi: 10.1016/j.watres.2013.09.050

    CrossRef Google Scholar

    [3] Deng J Q,Liu Y G,Liu S B,et al. Competitive adsorption of Pb(Ⅱ),Cd(Ⅱ) and Cu(Ⅱ) onto chitosan-pyromellitic dianhydride modified biochar[J]. Journal of Colloid and Interface Science, 2017, 506:355−364. doi: 10.1016/j.jcis.2017.07.069

    CrossRef Google Scholar

    [4] Jafarzadeh N,Heidari K,Meshkinian A,et al. Non-carcinogenic risk assessment of exposure to heavy metals in underground water resources in Saraven,Iran:Spatial distribution,monte-carlo simulation,sensitive analysis[J]. Environmental Research, 2022, 204:112002. doi: 10.1016/j.envres.2021.112002

    CrossRef Google Scholar

    [5] Wang Q,Zhao Y,Zhai S,et al. Application of different redox mediators induced bio-promoters to accelerate the recovery of denitrification and denitrifying functional microorganisms inhibited by transient Cr(Ⅵ) shock[J]. Journal of Hazardous Materials, 2021, 420:126664. doi: 10.1016/j.jhazmat.2021.126664

    CrossRef Google Scholar

    [6] Conceição F T,Silva M S G,Menegário A A,et al. Precipitation as the main mechanism for Cd(Ⅱ),Pb(Ⅱ) and Zn(Ⅱ) removal from aqueous solutions using natural and activated forms of red mud[J]. Environmental Advances, 2021, 4:100056. doi: 10.1016/j.envadv.2021.100056

    CrossRef Google Scholar

    [7] Chen Y,Yang X. Molecular simulation of layered GO membranes with amorphous structure for heavy metal ions separation[J]. Journal of Membrane Science, 2022, 660:120863. doi: 10.1016/j.memsci.2022.120863

    CrossRef Google Scholar

    [8] 崔婷,叶欣,朱霞萍,等. 土壤铁锰氧化物形态测定及吸附Sb(Ⅲ)的主控因子研究[J]. 岩矿测试,2023,42(1):167−176.

    Google Scholar

    Cui T,Ye X,Zhu X P,et,al. Determination of various forms of iron and manganese oxides and the main controlling factors of absorption of Sb(Ⅲ) in soil[J]. Rock and Mineral Analysis, 2023, 42(1):167−176.

    Google Scholar

    [9] Jyoti D,Sinha R,Faggio C. Advances in biological methods for the sequestration of heavy metals from water bodies:A review[J]. Environmental Toxicology and Pharmacology, 2022, 94:103927. doi: 10.1016/j.etap.2022.103927

    CrossRef Google Scholar

    [10] Chen Q,Luo Z,Hills C,et al. Precipitation of heavy metals from wastewater using simulated flue gas:Sequent additions of fly ash,lime and carbon dioxide[J]. Water Research, 2009, 43:2605−2614. doi: 10.1016/j.watres.2009.03.007

    CrossRef Google Scholar

    [11] Luo J,Maier R M,Yu D,et al. Crittenden,double-network hydrogel:A potential practical adsorbent for critical metals extraction and recovery from water[J]. Environmental Science & Technology, 2022, 56:4715−4717.

    Google Scholar

    [12] Wu J W,Wang T,Wang J W,et al. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar:Enhanced the ion exchange and precipitation capacity[J]. Science of the Total Environment, 2021, 754:142150. doi: 10.1016/j.scitotenv.2020.142150

    CrossRef Google Scholar

    [13] 聂雪. 改性壳聚糖金属螯合物的合成及电催化性能研究[D]. 长沙: 中南大学, 2005.

    Google Scholar

    Nie X. Synthesis and electrocatalytic properties of modified chitosan metal chelates[D]. Changsha: Central South University, 2005.

    Google Scholar

    [14] Jiang B,Lin Y,Mbog J C. Biochar derived from swine manure digestate and applied on the removals of heavy metals and antibiotics[J]. Bioresource Technology, 2018, 270:603−611. doi: 10.1016/j.biortech.2018.08.022

    CrossRef Google Scholar

    [15] Zhao C,Liu G,Sun N,et al. Biomass-derived N-doped porous carbon as electrode materials for Zn-air battery powered capacitive deionization[J]. Chemical Engineering Journal, 2018, 334:1270−1280. doi: 10.1016/j.cej.2017.11.069

    CrossRef Google Scholar

    [16] Nazari S,Rahimi G,Khadem A. Effectiveness of native and citric acid-enriched biochar of chickpea straw in Cd and Pb sorption in an acidic soil[J]. Journal of Environmental Chemical Engineering, 2019, 7:103064. doi: 10.1016/j.jece.2019.103064

    CrossRef Google Scholar

    [17] Wang F,Jin L,Guo C,et al. Enhanced heavy metals sorption by modified biochars derived from pig manure[J]. Science of the Total Environment, 2021, 786:147595. doi: 10.1016/j.scitotenv.2021.147595

    CrossRef Google Scholar

    [18] Song J Y,Messele S A,Meng L J,et al. Adsorption of metals from oil sands process water (OSPW) under natural pH by sludge-based biochar/chitosan composite[J]. Water Research, 2021, 194:116930. doi: 10.1016/j.watres.2021.116930

    CrossRef Google Scholar

    [19] Feng Z Y,Feng C P,Chen N,et al. Preparation of composite hydrogel with high mechanical strength and reusability for removal of Cu(Ⅱ) and Pb(Ⅱ) from water[J]. Separation and Purification Technology, 2022, 300:121894. doi: 10.1016/j.seppur.2022.121894

    CrossRef Google Scholar

    [20] Chang Z,Tian L,Dong J,Chen Q,et al. The molecular markers provide complementary information for biochar characterization before and after HNO3/H2SO4 oxidation[J]. Chemosphere, 2022, 301:134422. doi: 10.1016/j.chemosphere.2022.134422

    CrossRef Google Scholar

    [21] Du H,Xi C,Tang B,et al. Performance and mechanisms of NaOH and ball-milling co-modified biochar for enhanced the removal of Cd2+ in synthetic water:A combined experimental and DFT study[J]. Arabian Journal of Chemistry, 2022, 15:103817. doi: 10.1016/j.arabjc.2022.103817

    CrossRef Google Scholar

    [22] Yin G,Tao L,Chen X,et al. Quantitative analysis on the mechanism of Cd2+ removal by MgCl2-modified biochar in aqueous solutions[J]. Journal of Hazardous Materials, 2021, 420:126487. doi: 10.1016/j.jhazmat.2021.126487

    CrossRef Google Scholar

    [23] Gao N,Du W,Zhang M G,et al. Chitosan-modified biochar:Preparation,modifications,mechanisms and applications[J]. International Journal of Biological Macromolecules, 2022, 209:31−49. doi: 10.1016/j.ijbiomac.2022.04.006

    CrossRef Google Scholar

    [24] Mallik A K,Kabir S F,Sakib M N,et al. Cu(Ⅱ) removal from wastewater using chitosan-based adsorbents:A review[J]. Journal of Environmental Chemical Engineering, 2022, 10:108048. doi: 10.1016/j.jece.2022.108048

    CrossRef Google Scholar

    [25] Li Y,Zhou Y,Nie W,et al. Highly efficient methylene blue dyes removal from aqueous systems by chitosan coated magnetic mesoporous silica nanoparticles[J]. Journal of Porous Materials, 2015, 22:1383−1392. doi: 10.1007/s10934-015-0017-7

    CrossRef Google Scholar

    [26] Javanbakht V,Ghoreishi S M,Habibi N,et al. A novel magnetic chitosan/clinoptilolite/magnetite nanocomposite for highly efficient removal of Pb(Ⅱ) ions from aqueous solution[J]. Powder Technology, 2016, 302:372−383. doi: 10.1016/j.powtec.2016.08.069

    CrossRef Google Scholar

    [27] Charpentier T V J,Neville A,Lanigan J L,et al. Preparation of magnetic carboxymethylchitosan nanoparticles for adsorption of heavy metal ions[J]. ACS Omega, 2016, 1:77−83. doi: 10.1021/acsomega.6b00035

    CrossRef Google Scholar

    [28] 李满林. 氨基硫脲及氨基化壳聚糖衍生物的合成与应用研究[D]. 杨凌: 西北农林科技大学, 2014.

    Google Scholar

    Li M L. Synthesis and application of thiourea and chitosan derivatives[D]. Yangling: Northwest A&F University, 2014.

    Google Scholar

    [29] Xiang J,Lin Q,Cheng S,et al. Enhanced adsorption of Cd(Ⅱ) from aqueous solution by a magnesium oxide-rice husk biochar composite[J]. Environmental Science and Pollution Research, 2018, 25:14032−14042. doi: 10.1007/s11356-018-1594-1

    CrossRef Google Scholar

    [30] Zhou Y,Gao B,Fang J,et al. Sorption of heavy metals on chitosan-modified biochars and its biological effects[J]. Chemical Engineering Journal, 2013, 231:512−518. doi: 10.1016/j.cej.2013.07.036

    CrossRef Google Scholar

    [31] Xiang J,Lin Q,Yao X,et al. Removal of Cd from aqueous solution by chitosan coated MgO-biochar and its in-situ remediation of Cd-contaminated soil[J]. Environmental Research, 2021, 195:110650. doi: 10.1016/j.envres.2020.110650

    CrossRef Google Scholar

    [32] Xu L,Liu Y,Wang J,et al. Selective adsorption of Pb2+ and Cu2+ on amino-modified attapulgite:Kinetic,thermal dynamic and DFT studies[J]. Journal of Hazardous Materials, 2021, 404:124140. doi: 10.1016/j.jhazmat.2020.124140

    CrossRef Google Scholar

    [33] 赵子科,陈春亮,柯盛,等. 榴莲壳和不同炭材料对低汞溶液的吸附动力学[J]. 岩矿测试,2022,41(1):90−98. doi: 10.3969/j.issn.0254-5357.2022.1.ykcs202201009

    CrossRef Google Scholar

    Zhao Z K,Chen C L,Ke S,et al. Adsorption kinetics of durian shell and different carbon materials to low mercury solution[J]. Rock and Mineral Analysis, 2022, 41(1):90−98. doi: 10.3969/j.issn.0254-5357.2022.1.ykcs202201009

    CrossRef Google Scholar

    [34] 许芳,张利平,程先忠,等. 改性桑树叶吸附材料对废水中Cd(Ⅱ)的吸附性能研究[J]. 岩矿测试,2016,35(1):62−68.

    Google Scholar

    Xu F,Zhang L P,Cheng X Z,et al. Study on the adsorption performance of modified mulberry leaf adsorbent for Cd(Ⅱ) in wastewater[J]. Rock and Mineral Analysis, 2016, 35(1):62−68.

    Google Scholar

    [35] Karthik R,Meenakshi S. Removal of Pb(Ⅱ) and Cd(Ⅱ) ions from aqueous solution using polyaniline grafted chitosan[J]. Chemical Engineering Journal, 2015, 263:168−177. doi: 10.1016/j.cej.2014.11.015

    CrossRef Google Scholar

    [36] Bai R X,Zhang Y,Zhao Z G,et al. Rapid and highly selective removal of lead in simulated wastewater of rare-earth industry using diglycolamic-acid functionalized magnetic chitosan adsorbents[J]. Journal of Industrial and Engineering Chemistry, 2018, 59(25):416−424.

    Google Scholar

    [37] Ren Y,He F,Peng H,et al. Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent:Preparation,characterization,and application in heavy metal adsorption[J]. Chemical Engineering Journal, 2013, 226(12):300−311.

    Google Scholar

    [38] Rozumová L,Zivotský O,Seidlerová J,et al. Magnetically modified peanut husks as an effective sorbent of heavy metals[J]. Journal of Environmental Chemical Engineering, 2016, 4(1):549−555. doi: 10.1016/j.jece.2015.10.039

    CrossRef Google Scholar

    [39] Luo X,Zeng J,Liu S,et al. An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system:Magnetic chitosan/cellulose microspheres[J]. Bioresource Technology, 2015, 194:403−406. doi: 10.1016/j.biortech.2015.07.044

    CrossRef Google Scholar

    [40] Culita D C,Simonescu C M,Dragne M,et al. Effect of surfactant concentration on textural,morphological and magnetic properties of CoFe2O4 nanoparticles and evaluation of their adsorptive capacity for Pb(Ⅱ) ions[J]. Ceramics International, 2015, 41(10):13553−13560. doi: 10.1016/j.ceramint.2015.07.150

    CrossRef Google Scholar

    [41] Ifthikar J,Jiao X,Ngambia A,et al. Facile one-pot synthesis of sustainable carboxymethyl chitosan-sewage sludge biochar for effective heavy metal chelation and regeneration[J]. Bioresource Technology, 2018, 262:22−31. doi: 10.1016/j.biortech.2018.04.053

    CrossRef Google Scholar

    [42] Afzal M Z,Sun X F,Liu J,et al. Enhancement of ciprofloxacin sorption on chitosan/biochar hydrogel beads[J]. Science of the Total Environment, 2018, 639:560−569. doi: 10.1016/j.scitotenv.2018.05.129

    CrossRef Google Scholar

    [43] Zhou Y M,Fu S Y,Zhang L L,et al. Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(Ⅱ)[J]. Carbohydrate Polymers, 2014, 101:75−82. doi: 10.1016/j.carbpol.2013.08.055

    CrossRef Google Scholar

    [44] 肖雪婷. Fe3O4-壳聚糖@生物炭的制备及处理油田采出水试验研究[D]. 沈阳: 沈阳建筑大学, 2020.

    Google Scholar

    Xiao X T. Study on preparation of Fe3O4-chitosan@biochar and treatment of oilfield produced water[D]. Shenyang: Shenyang Jianzhu University, 2020.

    Google Scholar

    [45] Tan Y,Wan X,Ni X,et al. Efficient removal of Cd(Ⅱ) from aqueous solution by chitosan modified kiwi branch biochar[J]. Chemosphere, 2022, 289:133251. doi: 10.1016/j.chemosphere.2021.133251

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(2363) PDF downloads(171) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint