Citation: | ZOU Pengfei, WANG Caihui, DU Jianguo, GE Weiya, LUO Zujiang, KONG Gang, QIU Yang, LIU Li. A study of simulation and optimization of the production-reinjection scheme of a geothermal water system: A case study of the geothermal space heating demonstration area in northern Jiangsu countryside[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 59-72. doi: 10.16030/j.cnki.issn.1000-3665.202302046 |
During the process of developing and utilizing geothermal resources, various challenges are encountered. One such challenge is the decrease in temperature and pressure of the geothermal reservoir as a result of the increasing geothermal exploitation and duration. In addition, the discharge of geothermal tail water poses a risk of thermal pollution, leading to environmental concerns. To address these issues effectively, reinjection of geothermal fluids into the reservoir can be implemented as a viable solution. Prior to initiating the geothermal development and utilization, it is crucial to conduct scientifical and rational planning of the layout of production and reinjection wells. This involves exploring optimal strategies for the production-reinjection scheme that prevents the premature thermal breakthrough and maximize the efficient utilization of geothermal resources, thereby extending the lifespan of the geothermal reservoir. The Fengpei Basin, a Cenozoic rift basin that developed since the Paleogene period, exhibits a widespread distribution of geothermal reservoirs, primarily composed of the Ordovician limestone with karst and fracture characteristics. Building upon the geothermal resource exploration results in the Anguo Town in Peixian County in Jiangsu Province, this study utilizes key parameters obtained from pumping tests and reinjection experiments, such as well spacing and the reinjection-to-production ratio. This paper establishes a 3D coupled numerical model of geothermal water seepage and heat transfer by using the Feflow6.2 software. The recoverable reserves of geothermal fluid within the geothermal reservoir are simulated and predictd, specifically the Ordovician limestone formation. Furthermore, a simulated optimization of the development and utilization scheme for the production-reinjection wells is conducted. The results reveal that an appropriate well spacing of 389 m between the producing well (RPX01) and the reinjection well (RPX02) is recommended. Moreover, the reinjection-to-production ratio, namely the ratio of average aquifer hydraulic conductivity, is determined to be 1.29, supporting a sustainable approach of one-for-one pumping and reinjection. With a stabilized drawdown of 50.61 m, the production well has a capacity to recover 1000 m3/d of geothermal resources. Under the conditions of a production rate and a reinjection rate of 1000 m3/d, as well as a reinjection temperature of 40 °C, the simulation predicts a decrease in groundwater level by 45.49 m and a temperature reduction of 1.44 °C after ten heating seasons. This represents the optimal cyclic development and utilization scheme among the simulated scenarios. The above results provide a scientific basis for decision-making in the construction of the clean energy heating demonstration area in rural northern Jiangsu. They contribute to the establishment of a scientifically sound and sustainable approach for utilizing geothermal resources, while considering the challenges associated with the thermal breakthrough and the environmental impact of geothermal tail water discharge.
[1] | LUND J W,TOTH A N. Direct utilization of geothermal energy 2020 worldwide review[J]. Geothermics,2021,90:1 − 31. |
[2] | 王贵玲,刘彦广,朱喜,等. 中国地热资源现状及发展趋势[J]. 地学前缘,2020,27(1):1 − 9. [WANG Guiling,LIU Yanguang,ZHU Xi,et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers,2020,27(1):1 − 9. (in Chinese with English abstract) doi: 10.13745/j.esf.2020.1.1 WANG Guiling, LIU Yanguang, ZHU Xi, et al. The status and development trend of geothermal resources in China [J]. Earth Science Frontiers, 2020, 27(1): 1–9. (in Chinese with English abstract) doi: 10.13745/j.esf.2020.1.1 |
[3] | 陈宗宇. 天津市塘沽低温热储回灌的水-岩相互作用地球化学模拟[J]. 地球科学,1998(5):79 − 84. [CHEN Zongyu. Modeling water-rock interaction of geothermal reinjection in the Tanggu low-temperature field,Tianjin[J]. Earth Earth Science,1998(5):79 − 84. (in Chinese with English abstract) CHEN Zongyu. Modeling water-rock interaction of geothermal reinjection in the tanggu low-temperature field, Tianjin [J]. Earth Earth Science, 1998, (5): 79–84. (in Chinese with English abstract) |
[4] | 何满潮,刘斌,姚磊华,等. 地热水对井回灌渗流场理论研究[J]. 中国矿业大学学报,2004(3):11 − 14. [HE Manchao,LIU Bin,YAO Leihua,et al. Study on theory of seepage field around geothermal production-reinjection doublets wells[J]. Journal of China University of Mining & Technology,2004(3):11 − 14. (in Chinese with English abstract) HE Manchao, LIU Bin, YAO Leihua, et al. Study on theory of seepage field around geothermal production-reinjection doublets wells [J]. Journal of China University of Mining & Technology, 2004, (3): 11–14. (in Chinese with English abstract) |
[5] | 申建梅,陈宗宇,张古彬. 地热开发利用过程中的环境效应及环境保护[J]. 地球学报,1998(4):67 − 73. [SHEN Jianmei,CHEN Zongyu,ZHANG Gubin. Environmental protection and environmental impact of geothermal development and utilization[J]. Acta Geoscientica Sinica,1998(4):67 − 73. (in Chinese with English abstract) SHEN Jianmei, CHEN Zongnyu, ZHANG Gubin. Environmental protection and environmental impact of geothermal development and utilization [J]. Acta Geoscientica Sinica, 1998, (4): 67–73. (in Chinese with English abstract) |
[6] | BAKKE S, VIK E A, GRÜNER H, et al. Produced water reinjection (PWRI) [M]// REED M, JOHNSEN S. Produced water 2: Environmental issues and mitigation technologies. Boston, MA: Springer, 1996 : 447-458. |
[7] | AXELSSON G,GUNNLAUGSSON E,JÓNASSON T,et al. Low-temperature geothermal utilization in Iceland–Decades of experience[J]. Geothermics,2010,39(4):329 − 338. doi: 10.1016/j.geothermics.2010.09.002 |
[8] | CAPPETTI G, PARISI L, RIDOLFI A, et al. Fifteen years of reinjection in the Larderello-Valle Secolo area: Analysis of the production data[C]// Proceedings World Geothermal Congress, 1995 : 18 − 31. |
[9] | KENNEDY B M, PRUESS K, LIPPMANN M J, et al. A history of geothermal energy research and development in the United States: Reservoir Engineering 1976—2006[R]. Washington, DC : Office of Energy Efficiency and Renewable Energy (EERE), 2010. |
[10] | UNGEMACH P, ANTICS M, PAPACHRISTOU M. Sustainable geothermal reservoir management[C]//Proceedings World Geothermal Congress, 2005 : 24 − 29. |
[11] | 刘久荣. 地热回灌的发展现状[J]. 水文地质工程地质,2003,30(3):100 − 104. [LIU Jiurong. The status of geothermal reinjection[J]. Hydrogeology & Engineering Geology,2003,30(3):100 − 104. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2003.03.025 LIU Jiurong. The status of geothermal reinjection [J]. Hydrogeology & Engineering Geology, 2003, 30(3): 100–104. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2003.03.025 |
[12] | 曾梅香,田光辉,赵越波,等. 采灌条件下中低温热储温度场动态特征初探[J]. 中国地质,2010,37(1):191 − 197. [ZENG Meixiang,TIAN Guanghui,ZHAO Yuebo,et al. A tentative discussion on dynamic characteristics of the low-medium temperature geothermal reservoir field under the condition of exploitation-reinjection[J]. Geology in China,2010,37(1):191 − 197. (in Chinese with English abstract) ZENG Meixiang, TIAN Guanghui, ZHAO Yuebo, et al. A tentative discussion on dynamic characteristics of the low-medium temperature geothermal reservoir field under the condition of exploitation-reinjection [J]. Geology in China, 2010, 37(1): 191–197. (in Chinese with English abstract) |
[13] | 宋先知,李根生,王高升,等. 中深层地热能取热技术研究进展[J]. 科技导报,2022,40(20):42 − 51. [SONG Xianzhi,LI Gensheng,WANG Gaosheng,et al. Research progress on heat extraction technology for developing medium-deep geothermal energy[J]. Science & Technology Review,2022,40(20):42 − 51. (in Chinese with English abstract) SONG Xianzhi, LI Gensheng, WANG Gaosheng, et al. Research progress on heat extraction technology for developing medium-deep geothermal energy [J]. Science & Technology Review, 2022, 40(20): 42–51. (in Chinese with English abstract) |
[14] | 高楠安, 汪新伟, 梁海军, 等. 山东临清坳陷大名次凹陷地热系统成因模式[J]. 中国地质, 2021: 1–19 GAO Nan’an, WANG Xinwei, LIANG Haijun, et al. Genetic mechanism of geothermal system in Daming sag, Linqing depression, Linqing, Shangdong [J]. Geology in China, 2021: 1–19. (in Chinese with English abstract) |
[15] | 刘润川,任战利,叶汉青,等. 地热资源潜力评价—以鄂尔多斯盆地部分地级市和重点层位为例[J]. 地质通报,2021,40(4):565 − 576. [LIU Runchuan,REN Zhanli,YE Hanqing,et al. Potential evaluation of geothermal resources:Exemplifying some municipalities and key strata in Ordos Basin as a study case[J]. Geological Bulletin of China,2021,40(4):565 − 576. (in Chinese with English abstract) LIU Runchuan, REN Zhanli, YE Hanqing, et al. Potential evaluation of geothermal resources: exemplifying some municipalities and key strata in Ordos Basin as a study case [J]. Geological Bulletin of China, 2021, 40( 4): 565-576. (in Chinese with English abstract) |
[16] | 刘东林,李义曼,庞忠和,等. 碳酸盐岩热储对湖水回灌的响应[J]. 工程地质学报,2019,27(1):178 − 183. [LIU Donglin,LI Yiman,PANG Zhonghe,et al. Geochemical responses of carbonate reservoir to untreated lake water reinjecition doi: 10.13544/j.cnki.jeg.2019-064 J]. Journal of Engineering Geology,2019,27(1):178 − 183. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2019-064 |
[17] | WANG Shufang,LIU Jiurong,SUN Ying,et al. Study on the geothermal production and reinjection mode in Xiong County[J]. Journal of Groundwater Science and Engineering,2018,5(3):178 − 186. |
[18] | WANG Guiling,ZHANG Wei,MA Feng,et al. Overview on hydrothermal and hot dry rock researches in China[J]. China Geology,2018,1(2):273 − 285. doi: 10.31035/cg2018021 |
[19] | STEFANSSON V. Geothermal reinjection experience[J]. Geothermics,1997,26(1):99 − 139. doi: 10.1016/S0375-6505(96)00035-1 |
[20] | KAMILA Z,KAYA E,ZARROUK S J. Reinjection in geothermal fields:An updated worldwide review 2020[J]. Geothermics,2021,89:1 − 88. |
[21] | 阮传侠,沈健,李立亮,等. 天津市滨海新区东丽湖地区基岩热储回灌研究[J]. 地质通报,2017,36(8):1439 − 1449. [RUAN Chuanxia,SHEN Jian,LI Liliang,et al. Researches on the reinjection of Dongli Lake bedrock reservoir in Binhai New Area,Tianjin[J]. Geological Bulletin of China,2017,36(8):1439 − 1449. (in Chinese with English abstract) RUAN Chuanxia, SHEN Jian, LI Liliang, et al. Researches on the reinjection of Dongli Lake bedrock reservoir in Binhai New Area, Tianjin [J]. Geological Bulletin of China, 2017, 36(8): 1439-1449. (in Chinese with English abstract) |
[22] | 赵振,秦光雄,罗银飞,等. 西宁盆地地热水特征及回灌结垢风险[J]. 水文地质工程地质,2021,48(5):193 − 204. [ZHAO Zhen,QIN Guangxiong,LUO Yinfei,et al. Characteristics of geothermal water in the Xining Basin and risk of reinjection scaling[J]. Hydrogeology & Engineering Geology,2021,48(5):193 − 204. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202103058 ZHAO Zhen, QIN Guangxiong, LUO Yinfei, et al. Characteristics of geothermal water in the Xining Basin and risk of reinjection scaling [J]. Hydrogeology & Engineering Geology, 2021, 48(5): 193–204. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202103058 |
[23] | 马峰, 王贵玲, 刘桂宏, 等. 雄安新区容城地热田碳酸盐岩热储采灌数值模拟[J/OL]. 吉林大学学报(地球科学版), (2022-12-27)[2023-01-30]. https://doi.org/10.13278/j.cnki.jjuese.20220004. MA Feng, WANG Guiling, LIU Guihong, et al. Numerical simulation of exploitation and reinjection of carbonate geothermal reservoir in Rongcheng geothermal field, Xiongan New Area[J/OL]. Journal of Jilin University (Earth Science Edition), (2022-12-27)[2023-01-30].(in Chinese with English abstract) |
[24] | ZARROUK S J, O’SULLIVAN M J, CROUCHER A E, et al. Optimized numerical modeling of production from the poihipi dry steam zone: Wairakei geothermal system[C]//Proceedings of 31 workshop on geothermal reservoir engineering Stanford University, Stanford, California. 2006. |
[25] | ROMAGNOLI P,ARIAS A,BARELLI A,et al. An updated numerical model of the Larderello–Travale geothermal system,Italy[J]. Geothermics,2010,39(4):292 − 313. |
[26] | 杨亚军,丁桂伶,徐巍,等. 基于示踪试验及动态数据的北京小汤山地区地热资源量评价[J]. 水文地质工程地质,2020,47(5):196 − 200. [YANG Yajun,DING Guiling,XU Wei,et al. Tracer test and geothermal resource quantity evaluation based on dynamic data in the Xiaotangshan area of Beijing[J]. Hydrogeology & Engineering Geology,2020,47(5):196 − 200. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201808029 YANG Yajun, DING Guiling, XU Wei, et al. Tracer test and geothermal resource quantity evaluation based on dynamic data in the Xiaotangshan area of Beijing [J]. Hydrogeology & Engineering Geology, 2020, 47(5): 196–200. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201808029 |
[27] | 杜建国, 王彩会, 孔刚, 等. 苏北农村住房条件改善清洁能源供暖示范区(沛县)地热资源勘查报告[R]. 南京: 江苏省地质调查研究院, 2022 DU Jianguo, WANG Caihui, KONG Gang, et al. Report of geothermal resources exploration in the clean energy heating demonstration area of rural housing improvement in Northern Jiangsu (Peixian County)[R]. Nanjing: Geological Survey of Jiangsu Province, 2022. (in Chinese) |
[28] | 梅玲, 王健呈, 张华哲. 江苏省沛县朱寨镇燕牌坊地热资源勘查报告[R]. 南京: 江苏长江地质勘查院, 2015 MEI Ling, WANG Jiancheng, ZHANG Huazhe. Geothermal resources exploration report of Yanpaifang, Zhuzhai Town, Peixian County, Jiangsu Province [R]. Nanjing: Jiangsu Yangtze River Geological Exploration Institute, 2015. (in Chinese) |
[29] | SU Yujuan,YANG Fengtian,WANG Bing,et al. Reinjection of cooled water into sandstone geothermal reservoirs in China:A review[J]. Geosciences Journal,2018,22(1):199 − 207. doi: 10.1007/s12303-017-0019-3 |
[30] | WANG Guiling,WANG Wanli,ZHANG Wei,et al. The status quo and prospect of geothermal resources exploration and development in Beijing-Tianjin-Hebei region in China[J]. China Geology,2020,3(1):173 − 181. doi: 10.31035/cg2020013 |
[31] | 王钧, 黄尚瑶, 黄歌山, 等. 中国地温分布的基本特征[M]. 北京: 地震出版社, 1990 WANG Jun, HUANG Shangyao, HUANG Geshan, et al. Basic characteristics of geothermal distribution in China [M]. Beijing: Seismological Press, 1990. (in Chinese) |
[32] | 江苏省地质矿产局. 江苏省及上海市区域地质志[M]. 北京: 地质出版社, 1984: 612 − 616 Jiangsu Bureau of Geology and Mineral Resources Exploration. Monograph on the regional geology of Jiangsu Province and Shanghai City[M]. Beijing: Geology Press, 1984: 612 − 616. (in Chinese) |
[33] | 吕雅馨,骆祖江,徐成华. 南京汤山地区地热水资源评价[J]. 吉林大学学报(地球科学版),2020,50(6):1844 − 1853. [LǙ Yaxin,LUO Zujiang,XU Chenghua. Evaluation of geothermal water resources in Tangshan area,Nanjing[J]. Journal of Jilin University(Earth Science Edition),2020,50(6):1844 − 1853. (in Chinese with English abstract) LǙ Yaxin, LUO Zujiang, XU Chenghua. Evaluation of geothermal water resources in Tangshan are, Nanjing [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(6): 1844–1853. (in Chinese with English abstract) |
[34] | 中国地质调查局. 水文地质手册[M]. 2 版. 北京: 地质出版社, 2012: 445 − 461. [China Geological Survey. Handbook of hydrogeology[M]. 2nd ed. Beijing: Geology Press, 2012: 445 − 461. (in Chinese)] |
[35] | 宾德智, 刘延忠, 郑克棪, 等. 地热资源地质勘查规范: GB/T 11615—2010[S]. 北京: 中国标准出版社, 2011 BIN Dezhi, LIU Yanzhong, ZHENG Keyan, et al. Geologic exploration standard of geothermal resources: GB/T 11615—2010[S]. Beijing: Standard Press of China, 2021. (in Chinese) |
[36] | 曹剑峰, 迟宝明, 王文科, 等. 专门水文地质学[M]. 北京: 科学出版社, 2006 CAO Jianfeng, CHI Baoming, Wang Wenke, et al. Applied hydrogeology[M]. Beijing: Science Press, 2006. (in Chinese) |
[37] | 王贵玲, 李曼, 张明燕, 等. 地热资源评价方法及估算规程: DZ/T 0331—2020[S]. 北京: 中国标准出版社, 2020 WANG Guiling, LI Man, ZHANG Mingyan, et al. Specification for estimation and evaluation of geothermal resources: DZ/T 0331—2020[S]. Beijing: Standard Press of China, 2020. (in Chinese) |
Geological structure zoning map of Pei County
Geothermal geological profile in the study area
Vertical stratification diagram of the model
Distribution of the elevation plane of the top and bottom of the Ordovician carbonate rock in the study area
Schematic diagram of the geothermal conceptual model in the study area
Diagram of the 3D numerical model in the study area
Parameter partition map for model in the study area
Initial flow field diagram and initial temperature field diagram of geothermal reservoir in the study area
Fitting map of water table of well RPX01
Trend chart of the distribution changes of the simulated seepage fields in the target layer for different heating periods
Trend chart of the distribution changes of the simulated temperature fields in the target layer for different heating periods
Duration curve of water level and temperature variations at RPX01 production well over a 10-year operational period
Distribution changes of simulated seepage fields in the target layer for different heating periods under the condition of scheme 1
Distribution changes of the simulated temperature fields in the target layer for different heating periods under the condition of scheme 1
Distribution changes of the simulated temperature fields in the target layer for different heating periods under the condition of scheme 2
Duration curve of groundwater level and temperature variations at the RPX01 production well over 10 heating periods under the condition of scheme 1 and scheme 2