2023 Vol. 50, No. 4
Article Contents

WEN Dongguang, ZHANG Eryong, WANG Guiling, ZHANG Linyou, WANG Huang, ZHANG Senqi, YE Chengming, WANG Wenshi, JIN Xianpeng, LIU Donglin, JIA Xiaofeng, LI Shengtao, WU Haidong, LIAN Sheng, FENG Qingda. Progress and prospect of hot dry rock exploration and development[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 1-13. doi: 10.16030/j.cnki.issn.1000-3665.202304011
Citation: WEN Dongguang, ZHANG Eryong, WANG Guiling, ZHANG Linyou, WANG Huang, ZHANG Senqi, YE Chengming, WANG Wenshi, JIN Xianpeng, LIU Donglin, JIA Xiaofeng, LI Shengtao, WU Haidong, LIAN Sheng, FENG Qingda. Progress and prospect of hot dry rock exploration and development[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 1-13. doi: 10.16030/j.cnki.issn.1000-3665.202304011

Progress and prospect of hot dry rock exploration and development

More Information
  • The exploitation and utilization of clean energy is a resource and environmental issue of common concern for global sustainable development. As a vital strategic and sustainable future energy, hot dry rock (HDR) has attracted more and more attention. In this paper some thoughts on the future research direction of HDR resources in China are provided based on a worldwide experience summary, hoping to provide a useful reference for the future exploration and engineering development of HDR. Since the concept of HDR was put forward in the 1970s, the number of worldwide HDR construction has been increasingly growing. Although a lot of theoretical and technical breakthroughs have been made, only a small fraction of projects still in operation due to the lack of sustained financial support, induced microearthquakes and other issues. At present, the global development of HDR is gradually entering a new stage of exploration, and the basic theories of HDR to tackle the key problems are strengthening around the world. Since 2012, the China Geological Survey has organized and implemented the nationwide terrestrial HDR resources survey, evaluation, exploration and development, and significant stage progress has been achieved. A series of fundamental maps have been compiled, such as terrestrial heat flow value, curie surface depth, distribution of acidic rock, and heat-controlling structure in China. The resource potential of terrestrial HDR in China has been preliminarily estimated and a sounding basis for the target site selection is provided. HDR exploration and evaluation have been carried out in typical areas of Qinghai, Shandong, Hebei, Shanxi and Jiangsu provinces, and a breakthrough has been achieved in the Gonghe Basin of Qinghai. The first HDR resources exploration and production demonstration project in China was carried out in 2019, which made a series of meaningful outcomes in deep HDR exploration, high-temperature hard rock drilling, large-scale reservoir stimulation, reservoir connectivity and flow circulation, organic Rankine cycle (ORC) power generation, etc. The large-scale reservoir stimulation was carried out in 2020, and the first power generation test was completed in 2021. In general, the global exploration and development of HDR has made great progress. Practice has proved that HDR resources are a promising green energy and are expected to become an inexhaustible energy support for the world in the future. However, there is still a large gap between the existing path of HDR development and utilization and the economics of its supporting technologies compared with commercial development expectations at present. Although the development of HDR resources in China has achieved a breakthrough from “0” to “1”, there is still a long way to go from the international level. In order to solve the problems of large-scale and economic development, it is still needed to promote disruptive technological innovation in high temperature hard rock drilling and completion, fine characterization of deep reservoirs, safe large-scale reservoir construction, efficient heat transfer and heat recovery and other aspects.

  • 加载中
  • [1] JIANG Fangming,CHEN Jiliang,HUANG Wenbo,et al. A three-dimensional transient model for EGS subsurface thermo-hydraulic process[J]. Energy,2014,72:300 − 310. doi: 10.1016/j.energy.2014.05.038

    CrossRef Google Scholar

    [2] 许天福,张炜. 增强型地热工程国际发展和我国前景展望[J]. 石油科学通报,2016,1(1):38 − 44. [XU Tianfu,ZHANG Wei. Enhanced geothermal systems:International developments and China’s prospects[J]. Petroleum Science Bulletin,2016,1(1):38 − 44. (in Chinese with English abstract)

    Google Scholar

    XU Tianfu, ZHANG Wei. Enhanced Geothermal Systems: International developments and China’s prospects[J]. Petroleum Science Bulletin, 2016, 1(1)38-44(in Chinese with English abstract)

    Google Scholar

    [3] GRANT M A, BIXLEY P F. Geothermal Reservoir Engineering[M]. 2nd ed. Amsterdam: Elsevier, 2011.

    Google Scholar

    [4] SMITH M C. The Los Alamos scientific laboratory dry hot rock geothermal project (LASL Group Q-22)[J]. Geothermics,1975,4(1/2/3/4):27 − 39.

    Google Scholar

    [5] BREEDE K,DZEBISASHVILI K,LIU Xiaolei,et al. A systematic review of enhanced (or engineered) geothermal systems:Past,present and future[J]. Geothermal Energy,2013,1(1):1 – 27. doi: 10.1186/2195-9706-1-4

    CrossRef Google Scholar

    [6] KUMARI W G P,RANJITH P G. Sustainable development of enhanced geothermal systems based on geotechnical research—A review[J]. Earth-Science Reviews,2019,199:102955. doi: 10.1016/j.earscirev.2019.102955

    CrossRef Google Scholar

    [7] 廖志杰,万天丰,张振国. 增强型地热系统:潜力大、开发难[J]. 地学前缘,2015,22(1):335 − 344. [LIAO Zhijie,WAN Tianfeng,ZHANG Zhenguo. The enhanced geothermal system (EGS):Huge capacity and difficult exploitation[J]. Earth Science Frontiers,2015,22(1):335 − 344. (in Chinese with English abstract)

    Google Scholar

    LIAO Zhijie, WAN Tianfeng, ZHANG Zhenguo. The enhanced geothermal system EGS: Huge capacity and difficult exploitation[J]. Earth Science Frontiers, 2015, 22(1): 335-344. (in Chinese with English abstract)

    Google Scholar

    [8] LU S M. A global review of enhanced geothermal system (EGS)[J]. Renewable and Sustainable Energy Reviews,2018,81:2902 − 2921. doi: 10.1016/j.rser.2017.06.097

    CrossRef Google Scholar

    [9] 蔺文静,王贵玲,邵景力,等. 我国干热岩资源分布及勘探:进展与启示[J]. 地质学报,2021,95(5):1366 − 1381. [LIN Wenjing,WANG Guiling,SHAO Jingli,et al. Distribution and exploration of hot dry rock resources in China:Progress and inspiration[J]. Acta Geologica Sinica,2021,95(5):1366 − 1381. (in Chinese with English abstract)

    Google Scholar

    LIN Wenjing, WANG Guiling, SHAO Jingli, et al. Distribution and exploration of hot dry rock resources in China: Progress and inspiration[J]. Acta Geologica Sinica, 2021, 95(5): 1366-1381. (in Chinese with English abstract)

    Google Scholar

    [10] MA Feng, WANG Guiling, SUN Hongli, et al. Indication of hydrogen and oxygen stable isotopes on the characteristics and circulation patterns of medium-low temperature geothermal resources in the Guanzhong Basin, China[J]. Journal of Groundwater Science and Engineering, 2022, 10(1): 70 – 86.

    Google Scholar

    [11] 张超,张盛生,李胜涛,等. 共和盆地恰卜恰地热区现今地热特征[J]. 地球物理学报,2018,61(11):4545 − 4557. [ZHANG Chao,ZHANG Shengsheng,LI Shengtao,et al. Geothermal characteristics of the Qiabuqia geothermal area in the Gonghe Basin,northeastern Tibetan Plateau[J]. Chinese Journal of Geophysics,2018,61(11):4545 − 4557. (in Chinese with English abstract)

    Google Scholar

    ZHANG Chao, ZHANG Shengsheng, LI Shengtao, et al. Geothermal characteristics of the Qiabuqia geothermal area in the Gonghe Basin, northeastern Tibetan Plateau[J]. Chinese Journal of Geophysics, 2018, 61(11): 4545-4557. (in Chinese with English abstract)

    Google Scholar

    [12] ZHANG Eryong,WEN Dongguang,WANG Guiling. et al. The first power generation test of hot dry rock resources exploration and production demonstration project in the Gonghe Basin,Qinghai Province,China[J]. China Geology ,2022,5(3):372 − 382. doi: 10.31035/cg2022038

    CrossRef Google Scholar

    [13] KONG Yanlong,PAN Sheng,REN Yaqian,et al. Catalog of enhanced geothermal systems based on heat sources[J]. Acta Geologica Sinica(English Edition),2021,95(6):1882 − 1891. doi: 10.1111/1755-6724.14876

    CrossRef Google Scholar

    [14] 张超,胡圣标,黄荣华,等. 干热岩地热资源热源机制研究现状及其对成因机制研究的启示[J]. 地球物理学进展,2022,37(5):1907 − 1919. [ZHANG Chao,HU Shengbiao,HUANG Ronghua,et al. Research status of heat source mechanism of the hot dry rock geothermal resources and its implications to the studies of genetic mechanism[J]. Progress in Geophysics,2022,37(5):1907 − 1919. (in Chinese with English abstract)

    Google Scholar

    ZHANG Chao, HU Shengbiao, HUANG Ronghua, et al. Research status of heat source mechanism of the hot dry rock geothermal resources and its implications to the studies of genetic mechanism[J]. Progress in Geophysics, 2022, 37(5): 1907-1919. (in Chinese with English abstract)

    Google Scholar

    [15] LIN Wenjing, WANG Guiling, GAN Haonan, et al. Heat source model for enhanced geothermal systems (EGS) under different geological conditions in China[J/OL]. Gondwana Research, (2022-08-19)[2023-03-20]. https://doi.org/10.1016/j.gr.2022.08.007.

    Google Scholar

    [16] 冉恒谦,冯起赠. 我国干热岩勘查的有关技术问题[J]. 探矿工程(岩土钻掘工程)),2010,37(10):17 − 21. [RAN Hengqian,FENG Qizeng. Some technical issues on hot dry rock exploration in China[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2010,37(10):17 − 21. (in Chinese with English abstract)

    Google Scholar

    RAN Hengqian, FENG Qizeng. Some technical issues on hot dry rock exploration in China[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2010, 37(10)17-21. (in Chinese with English abstract)

    Google Scholar

    [17] 杨冶,姜志海,岳建华,等. 干热岩勘探过程中地球物理方法技术应用探讨[J]. 地球物理学进展,2019,34(4):1556 − 1567. [YANG Ye,JIANG Zhihai,YUE Jianhua,et al. Discussion on application of geophysical methods in hot dry rock(HDR) exploration[J]. Progress in Geophysics,2019,34(4):1556 − 1567. (in Chinese with English abstract)

    Google Scholar

    YANG Ye, JIANG Zhihai, YUE Jianhua, et al. Discussion on application of geophysical methods in Hot Dry Rock(HDR) exploration[J]. Progress in Geophysics, 2019, 34(4): 1556-1567. (in Chinese with English abstract)

    Google Scholar

    [18] 何治亮,张英,冯建赟,等. 基于工程开发原则的干热岩目标区分类与优选[J]. 地学前缘,2020,27(1):81 − 93. [HE Zhiliang,ZHANG Ying,FENG Jianyun,et al. Classification of geothermal resources based on engineering considerations and HDR EGS site screening in China[J]. Earth Science Frontiers,2020,27(1):81 − 93. (in Chinese with English abstract)

    Google Scholar

    HE Zhiliang, ZHANG Ying, FENG Jianyun, et al. Classification of geothermal resources based on engineering considerations and HDR EGS site screening in China[J]. Earth Science Frontiers, 2020, 27(1): 81-93. (in Chinese with English abstract)

    Google Scholar

    [19] 郭建春,肖勇,蒋恕,等. 深层干热岩水力剪切压裂认识与实践[J]. 地质学报,2021,95(5):1582 − 1593. [GUO Jianchun,XIAO Yong,JIANG Shu,et al. Understanding and practice of hydraulic shearing in deep hot dry rocks[J]. Acta Geologica Sinica,2021,95(5):1582 − 1593. (in Chinese with English abstract)

    Google Scholar

    GUO Jianchun, XIAO Yong, JIANG Shu, et al. Understanding and practice of hydraulic shearing in deep hot dry rocks[J]. Acta Geologica Sinica, 2021, 95(5): 1582-1593. (in Chinese with English abstract)

    Google Scholar

    [20] 陈作,张保平,周健,等. 干热岩热储体积改造技术研究与试验[J]. 石油钻探技术,2020,48(6):82 − 87. [CHEN Zuo,ZHANG Baoping,ZHOU Jian, et al. Research and test on the stimulated reservoir volume technology of hot dry rock[J]. Petroleum Drilling Techniques,2020,48(6):82 − 87. (in Chinese with English abstract)

    Google Scholar

    CHEN Zuo, ZHANG Baoping, ZHOU Jian, et al. Research and test on the stimulated reservoir volume technology of hot dry rock[J], Petroleum Drilling Techniques, 2020, 48(6): 82-86. (in Chinese with English abstract)

    Google Scholar

    [21] 王璜,王贵玲,岳高凡,等. 天然裂缝影响下的花岗岩水力裂缝扩展数值模拟[J]. 地质学报,2020,94(7):2124 − 2130. [WANG Huang,WANG Guiling,YUE Gaofan,et al. Numerical simulation of granite hydraulic fracture propagation under the influence of natural fractures[J]. Acta Geologica Sinica,2020,94(7):2124 − 2130. (in Chinese with English abstract)

    Google Scholar

    WANG Huang, WANG Guiling, YUE Gaofan, et al. Numerical simulation of granite hydraulic fracture propagation under the influence of natural fractures[J]. Acta Geologica Sinica. 2020, 94(7): 2124-2130. (in Chinese with English abstract)

    Google Scholar

    [22] 徐胜强,张旭东,张保平,等. 测斜仪监测技术在共和盆地干热岩井压裂中的应用研究[J]. 钻探工程,2021,48(2):42 − 48. [XU Shengqiang,ZHANG Xudong,ZHANG Baoping,et al. Application of inclinometer monitoring technology in Gonghe hot dry rock well fracturing[J]. Drilling Engineering,2021,48(2):42 − 48. (in Chinese with English abstract)

    Google Scholar

    XU Shengqiang, ZHANG Xudong, ZHANG Baoping, et al. Application of inclinometer monitoring technology in Gonghe hot dry rock well fracturing[J]. Drilling Engineering, 2021.48(2): 42-48. (in Chinese with English abstract)

    Google Scholar

    [23] MAJER E L,PETERSON J EJ E. The impact of injection on seismicity at The Geysers,California Geothermal Field[J]. International Journal of Rock Mechanics & Mining Sciences,2007,44(8):1079 − 1090.

    Google Scholar

    [24] 张杰,谢经轩. 多分支井增强型地热开发系统设计及产能评价[J]. 天然气工业,2021,41(3):179 − 188. [ZHANG Jie,XIE Jingxuan. Design and productivity evaluation of multi-lateral well enhanced geothermal development system[J]. Natural Gas Industry,2021,41(3):179 − 188. (in Chinese with English abstract) doi: 10.3787/j.issn.1000-0976.2021.03.021

    CrossRef Google Scholar

    ZHANG Jie, XIE Jingxuan. Design and productivity evaluation of multi-lateral well enhanced geothermal development system[J]. Natural Gas Industry, 2021, 41(3): 179-188. (in Chinese with English abstract) doi: 10.3787/j.issn.1000-0976.2021.03.021

    CrossRef Google Scholar

    [25] 苏长寿, 阴文行, 冯红喜, 等. 液动潜孔锤技术应用于干热岩钻井的可行性探讨[J]. 探矿工程(岩土钻掘工程), 2017, 44(3): 14 − 16, 266

    Google Scholar

    SU Changshou, YIN Wenhang, FENG Hongxi, et al. Feasibility study on application of hydraulic hammer technology in hot dry rock drilling[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2017, 44(3): 14 − 16. (in Chinese with English abstrac)

    Google Scholar

    [26] CAPUANO L, HUH M, RAYMOND D W, et al. Enhanced geothermal systems (EGS) well construction technology evaluation report[R]. Albuquerque, New Mexico: Sandia National Laboratories, 2008.

    Google Scholar

    [27] 甘浩男,王贵玲,蔺文静,等. 增强型地热系统环境地质影响现状研究与对策建议[J]. 地质力学学报,2020,26(2):211 − 220. [GAN Haonan,WANG Guiling,LIN wenjing,et al. Research on the status quo of environmental geology impact of enhanced geothermal system and countermeasures[J]. Journal of Geomechanics,2020,26(2):211 − 220. (in Chinese with English abstract)

    Google Scholar

    GAN Haonan, WANG Guiling, LIN wenjing, et al. 2020. Research on the status quo of environmental geology impact of enhanced geothermal system and countermeasures [J]. Journal of Geomechanics, 2020, 26 (2): 211- 220. (in Chinese with English abstract)

    Google Scholar

    [28] 尹欣欣,蒋长胜,翟鸿宇,等. 全球干热岩资源开发诱发地震活动和灾害风险管控[J]. 地球物理学报,2021,64(11):3817 − 3836. [YIN Xinxin,JIANG Changsheng,ZHAI Hongyu,et al. Review of induced seismicity and disaster risk control in dry hot rock resource development worldwide[J]. Chinese Journal of Geophysics,2021,64(11):3817 − 3836. (in Chinese with English abstract) doi: 10.6038/cjg2021O0448

    CrossRef Google Scholar

    YIN Xinxin, JIANG Changsheng, ZHAI Hongyu, et al. Review of induced seismicity and disaster risk control in dry hot rock resource development worldwide[J]. Chinese Journal of Geophysics, 2021, 64(11): 3817-3836. (in Chinese with English abstract) doi: 10.6038/cjg2021O0448

    CrossRef Google Scholar

    [29] FRYER B, SIDDIQI G, LALOUI L. Injection-induced seismicity: Strategies for reducing risk using high stress path reservoirs and temperature-induced stress preconditioning[J]. Geophysical Journal International. 2020, 220(2): 1436 − 1446.

    Google Scholar

    [30] OLASOLO P, JUÁREZ M C, MORALES M P, et al. Enhanced geothermal systems (EGS): A review[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 133 − 144.

    Google Scholar

    [31] POLLACK A, HORNE R, MUKERJI T. What are the challenges in developing enhanced geothermal systems (EGS)? Observations from 64 EGS Sites[C]// Reykjavik: Proceedings World Geothermal Congress, 2021.

    Google Scholar

    [32] 张森琦,文冬光,许天福,等. 美国干热岩“地热能前沿瞭望台研究计划”与中美典型EGS场地勘查现状对比[J]. 地学前缘,2019,26(2):321 − 334. [ZHANG Senqi,WEN Dongguang,XU Tianfu,et al. The US Frontier Observatory for Research in Geothermal Energy Project and comparison of typical EGS site exploration status in China and US[J]. Earth Science Frontiers,2019,26(2):321 − 334. (in Chinese with English abstract)

    Google Scholar

    ZHANG Senqi, WEN Dongguang, XU Tianfu, et al. The U. S. Frontier Observatory For Research in Geothermal Energy Project and comparison of typical EGS site exploration status in China and U. S[J]. Earth Science Frontiers, 2019, 26(2): 321-334. (in Chinese with English abstract)

    Google Scholar

    [33] 许天福, 张延军, 曾昭发, 等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 2012, 30(32): 42 − 45

    Google Scholar

    XU Tianfu, ZHANG Yanjun, ZENG Zhaofa, et al. Technology progress in an enhanced geothermal system (hot dry rock)[J]. Science & Technology Review, 2012, 30(32): 42 − 45. (in Chinese with English abstract)

    Google Scholar

    [34] 陆川, 王贵玲. 干热岩研究现状与展望[J]. 科技导报, 2015, 33(19): 13 − 21

    Google Scholar

    LU Chuan, WANG Guiling. Current status and prospect of hot dry rock research[J]. Science & Technology Review, 2015, 33(19): 13 − 21. (in Chinese with English abstract)

    Google Scholar

    [35] HARRISON T M, MORGAN P,BLACKWELL D D. Constraints on the age of heating at the Fenton Hill Site,Valles Caldera,New Mexico[J]. Journal of Geophysical Research:Solid Earth,1986,91(B2):1899 − 1908.

    Google Scholar

    [36] KELKAR S,WOLDEGABRIEL G,REHFELDT K. Lessons learned from the pioneering hot dry rock project at Fenton Hill,USA[J]. Geothermics,2016,63:5 − 14. doi: 10.1016/j.geothermics.2015.08.008

    CrossRef Google Scholar

    [37] LAUGHLIN A W,EDDY A C,LANEY R,et al. Geology of the Fenton Hill,New Mexico,hot dry rock site[J]. Journal of Volcanology and Geothermal Research,1983,15(1/2/3):21 − 41. doi: 10.1016/0377-0273(83)90094-X

    CrossRef Google Scholar

    [38] MIT-led Interdisciplinary Panel. The future of geothermal energy-impact of enhanced geothermal systems (EGS) on the United States in the 21st century[R]. 2006.

    Google Scholar

    [39] LAUGHLIN A W,PETTITT R A,WEST F G,et al. Status of the Los Alamos experiment to extract geothermal energy from hot dry rock[J]. Geology,1977,5(4):237 − 240. doi: 10.1130/0091-7613(1977)5<237:SOTLAE>2.0.CO;2

    CrossRef Google Scholar

    [40] AICHHOLZER C,DURINGER P,ORCIANI S,et al. New stratigraphic interpretation of the Soultz-sous-Forêts 30-year-old geothermal wells calibrated on the recent one from Rittershoffen (Upper Rhine Graben,France)[J]. Geothermal Energy,2016,4(1):1 − 26. doi: 10.1186/s40517-016-0043-y

    CrossRef Google Scholar

    [41] HOOIJKAAS G R,GENTER A,DEZAYES C. Deep-seated geology of the granite intrusions at the Soultz EGS site based on data from 5 km-deep boreholes[J]. Geothermics,2006,35(5/6):484 − 506.

    Google Scholar

    [42] VIDAL J,GENTER A. Overview of naturally permeable fractured reservoirs in the central and southern Upper Rhine Graben:Insights from geothermal wells[J]. Geothermics,2018,74(1):57 − 73.

    Google Scholar

    [43] GÉRARD A,GENTER A,KOHL T,et al. The deep EGS (enhanced geothermal system) project at Soultz-sous-Forêts (Alsace,France)[J]. Geothermics,2006,35(5/6):473 − 483. doi: 10.1016/j.geothermics.2006.12.001

    CrossRef Google Scholar

    [44] SCHILL E,GENTER A,CUENOT N,et al. Hydraulic performance history at the Soultz EGS reservoirs from stimulation and long-term circulation tests[J]. Geothermics,2017,70:110 − 124. doi: 10.1016/j.geothermics.2017.06.003

    CrossRef Google Scholar

    [45] TENMA N,YAMAGUCHI T,ZYVOLOSKI G. The Hijiori hot dry rock test site,Japan:Evaluation and optimization of heat extraction from a two-layered reservoir[J]. Geothermics,2008,37(1):19 − 52. doi: 10.1016/j.geothermics.2007.11.002

    CrossRef Google Scholar

    [46] KURIYAGAWA M,TENMA N. Development of hot dry rock technology at the Hijiori test site[J]. Geothermics,1999,28(4/5):627 − 636.

    Google Scholar

    [47] LIM W, HAMM S Y, LEE C, et al. Geothermal characteristics of deep wells using geophysical logs in Pohang area, Korea[C]// AGU Fall Meeting Abstracts, 2016.

    Google Scholar

    [48] LEE T J, SONG Y, JEON J, et al. Three dimensional geological model of Pohang EGS Pilot Site, Korea[C]// Melbourne: Proceedings World Geothermal Congress, 2015.

    Google Scholar

    [49] ELLSWORTH W L,GIARDINI D,TOWNEND J,et al. Triggering of the Pohang,Korea,earthquake (Mw 5.5) by enhanced geothermal system stimulation[J]. Seismological Research Letters,2019,90(5):1844 − 1858.

    Google Scholar

    [50] GRIGOLI F,CESCA S,RINALDI A P,et al. The November 2017 Mw 5.5 Pohang earthquake:A possible case of induced seismicity in South Korea[J]. Science,2018,360:1003 − 1006. doi: 10.1126/science.aat2010

    CrossRef Google Scholar

    [51] MCKITTRICK A. FORGE ahead-roadmap released for DOE’s Frontier Observatory for Research in Geothermal Energy[J]. Bulletin,2019,48:36 − 38.

    Google Scholar

    [52] SIMMONS S F, KIRBY S, ALLIS R, et al. The current geoscientific understanding of the Utah FORGE site[C]// Reykjavik: Proceedings World Geothermal Congress, 2021.

    Google Scholar

    [53] MOORE J, MCLENNAN J, ALLIS R, et al. The Utah Frontier Observatory for Research in Geothermal Energy (FORGE): An international laboratory for enhanced geothermal system technology development[C]// California: Workshop on Geothermal Reservoir Engineering, 2020.

    Google Scholar

    [54] 甘浩男, 王贵玲, 蔺文静, 等. 中国干热岩资源主要赋存类型与成因模式[J]. 科技导报, 2015, 33(19): 22 – 27.

    Google Scholar

    GAN Haonan, WANG Guiling, LIN Wenjing, et al. Research on the occurrence types and genetic models of hot dry rock resources in China[J]. Science & Technology Review, 2015, 33(19): 22 – 27. (in Chinese with English abstract)

    Google Scholar

    [55] 汪集旸, 胡圣标, 庞忠和, 等.中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25 − 31

    Google Scholar

    WANG Jiyang, HU Shengbiao, PANG Zhonghe, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 2012, 30(32): 25 − 31. (in Chinese with English abstract)

    Google Scholar

    [56] 蔺文静, 刘志明, 马峰, 等. 我国陆区干热岩资源潜力估算[J]. 地球学报, 2012, 33(5): 807 − 811

    Google Scholar

    LIN Wenjing, LIU Zhiming, MA Feng, et al. An estimation of HDR resources in China’s mainland[J]. Acta Geoscientica Sinica, 2012, 33(5): 807 − 811. (in Chinese with English abstract)

    Google Scholar

    [57] 自然资源部中国地质调查局, 国家能源局新能源和可再生能源司, 中国科学院科技战略咨询研究院, 等. 中国地热能发展报告(2018年)[R]. 北京: 中国石化出版社, 2018.

    Google Scholar

    China Geological Survey, Ministry of Natural Resources, New and Renewable Energy Department, National Energy Administration, Institutes of Science and Development, Chinese Academy of Sciences, et al. China geothermal energy development report[R]. Beijing: China Petrochemical Press, 2018. (in Chinese)

    Google Scholar

    [58] 张森琦,付雷,张杨,等. 基于高精度航磁数据的共和盆地干热岩勘查目标靶区圈定[J]. 天然气工业,2020,40(9):156 − 169. [ZHANG Senqi,FU Lei,ZHANG Yang,et al. Delineation of hot dry rock exploration target area in the Gonghe Basin based on high-precision aeromagnetic data[J]. Natural Gas Industry,2020,40(9):156 − 169. (in Chinese with English abstract)

    Google Scholar

    ZHANG Senqi, FU Lei, ZHANG Yang, et al. Delineation of hot dry rock exploration target area in the Gonghe Basin based on high-precision aeromagnetic data[J]. Natural Gas Industry, 2020, 40(9): 156-169. (in Chinese with English abstract)

    Google Scholar

    [59] 张森琦,李旭峰,宋健,等. 共和盆地壳内部分熔融层存在的地球物理证据与干热岩资源区域性热源分析[J]. 地球科学,2021,46(4):1416 − 1436. [ZHANG Senqi,LI Xufeng,SONG Jian,et al. Analysis on geophysical evidence for existence of partial melting layer in crust and regional heat source mechanism for hot dry rock resources of Gonghe Basin[J]. Earth Science,2021,46(4):1416 − 1436. (in Chinese with English abstract)

    Google Scholar

    ZHANG Senqi, LI Xufeng, SONG Jian, et al. Analysis on geophysical evidence for existence of partial melting layer in crust and regional heat source mechanism for hot dry rock resources of Gonghe Basin[J]. Earth Science, 2021(4): 1416-1436. (in Chinese with English abstract)

    Google Scholar

    [60] 张森琦,严维德,黎敦朋,等. 青海省共和县恰卜恰干热岩体地热地质特征[J]. 中国地质,2018,45(6):1087 − 1102. [ZHANG Senqi,YAN Weide,LI Dunpeng,et al. Characteristics of geothermal geology of the Qiabuqia HDR in Gonghe Basin,Qinghai Province[J]. Geology in China,2018,45(6):1087 − 1102. (in Chinese with English abstract)

    Google Scholar

    ZHANG Senqi, YAN Weide, LI Dunpeng, et al. Characteristics of geothermal geology of the Qiabuqia HDR in Gonghe Basin, Qinghai Province[J]. Geology in China, 2018, 45(6): 1087-1102. (in Chinese with English abstract)

    Google Scholar

    [61] 鲁辉. 苏北盆地东台坳陷碳酸盐岩热储层特征研究与评价[J]. 中国煤炭地质,2022,34(4):32 − 38. [LU Hui. Dongtai depression carbonate rock geothermal reservoir features research and assessment in North Jiangsu Basin[J]. Coal Geology of China,2022,34(4):32 − 38. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-1803.2022.04.07

    CrossRef Google Scholar

    HUI Lu. Dongtai depression carbonate rock geothermal reservoir features research and assessment in north Jiangsu basin[J]. Coal Geology of China, 2022, 34(4): 32-38. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-1803.2022.04.07

    CrossRef Google Scholar

    [62] XU Jianan,FENG Bo,CUI Zhenpeng,et al. Comparative study of acid and alkaline stimulants with granite in an enhanced geothermal system[J]. Acta Geologica Sinica (English Edition),2021,95(6):1926 − 1939. doi: 10.1111/1755-6724.14870

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(3405) PDF downloads(228) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint