2022 Vol. 38, No. 6
Article Contents

YUE Yuanfu, TANG Lichao, YU Kefu. General characteristics of sea-level changes along the North Atlantic coast in the past 2000 years[J]. Marine Geology Frontiers, 2022, 38(6): 1-15. doi: 10.16028/j.1009-2722.2021.279
Citation: YUE Yuanfu, TANG Lichao, YU Kefu. General characteristics of sea-level changes along the North Atlantic coast in the past 2000 years[J]. Marine Geology Frontiers, 2022, 38(6): 1-15. doi: 10.16028/j.1009-2722.2021.279

General characteristics of sea-level changes along the North Atlantic coast in the past 2000 years

More Information
  • The North Atlantic coast is one of the most vulnerable regions to sea-level rise in the world. The history and characteristics of the past sea-level changes in the region is of great scientific significance for understanding the course of modern sea-level changes and for predicting the trend of future sea-level changes, and also helps minimize the uncertainty of prediction results. Therefore, it is necessary to systematically analyze and integrate the published sea-level data as well as the tidal observation records along the North Atlantic coast. Using the available 1 350 tidal observation records and 1 604 calibrated data, the history of sea-level changes along the North Atlantic coast in the past 2000 years was established, and the main processes and characteristics, regional differences, and existing issues of sea-level changes along the North Atlantic coast in the past 2000 years were analyzed. Results show that: ① the sea-level changes in the North Atlantic coast in the past 2000 years are remarked by significant spatial and temporal differences, as well as the regional differences in amplitude and frequency. ② The sea-level along the North Atlantic coast shows a fluctuating upward trend in the past 2000 years, but the elevations of sea-level rising in different regions are quite different in different coastal regions. The sea-level rise in the eastern coast of North America is more than 2.5 m. The sea-level rise in Greenland-Iceland, Europe, and the southern and southeastern parts of the United States is about 1.9 m. The sea level rise in the North Sea and the Mediterranean is about 1 m. ③ Since 1900 AD, the rate of sea-level rise along the east and west coast of the North Atlantic has generally accelerated, showing a significant difference in latitude, namely, from the Mediterranean to the European coast to Greenland-Iceland on the east coast of the North Atlantic, the sea-level rise rate gradually increases with the increase of latitude. Similarly, from the south and southeast of the United States on the west coast of the North Atlantic to the east of the United States and then to the east of Canada, with the increase of latitude, the sea-level rise rate also increases in turn. ④ The sea-level change and its temporal and spatial differences in the North Atlantic coast during the past 2000 years are likely the combined effects of various factors. The alternation of cold and warm climate, glacial isostatic adjustment, atmospheric-ocean dynamics, regional tectonic movement, coastal terrain changes, sediment compaction, and tidal range changes may be the main reasons.

  • 加载中
  • [1] ZHANG Y,XIE J,LIU L. Investigating sea-level change and its impact on Hong Kong's coastal environment[J]. Geographic Information Sciences,2011,17(2):105-112.

    Google Scholar

    [2] WEBSTER J M,GEORGE N,BEAMAN R J,et al. Submarine landslides on the Great Barrier Reef shelf edge and upper slope:a mechanism for generating tsunamis on the north-east Australian coast?[J]. Marine Geology,2016,371(1):120-129.

    Google Scholar

    [3] ZHANG K,DOUGLAS B C,LEATHERMAN S P. Global warming and coastal erosion[J]. Climatic Change,2004,64(1/2):41-58. doi: 10.1023/B:CLIM.0000024690.32682.48

    CrossRef Google Scholar

    [4] ANDERSON T R,FLETCHER C H,BARB EE M M,et al. Doubling of coastal erosion under rising sea level by mid-century in Hawaii[J]. Natural Hazards,2015,78(1):75-103. doi: 10.1007/s11069-015-1698-6

    CrossRef Google Scholar

    [5] KRIEBEL D L,GEIMAN J D,HENDERSON G R. Future flood frequency under sea-level rise scenarios[J]. Journal of Coastal Research,2015,31(5):1078-1083.

    Google Scholar

    [6] VITOUSEK S,BARNARD P L,FLETCHER C H,et al. Doubling of coastal flooding frequency within decades due to sea-level rise[J]. Scientific Reports,2017,7(6):1399.

    Google Scholar

    [7] TAHERKHANI M,VITOUSEK S,BARNARD P L,et al. Sea-level rise exponentially increases coastal flood frequency[J]. Scientific Reports,2020,10(1):6466. doi: 10.1038/s41598-020-62188-4

    CrossRef Google Scholar

    [8] LANDSEA C W. Hurricanes and global warming[J]. Nature,2005,438(11):11-12.

    Google Scholar

    [9] WEBSTER P,HOLLAND G,CURRY J,et al. Changes in tropical cyclone number,duration,and intensity in a warming environment[J]. Science,2005,309(5742):1844-1846. doi: 10.1126/science.1116448

    CrossRef Google Scholar

    [10] EMANUEL K. Increasing destructiveness of tropical cyclones over the past 30 years[J]. Nature,2006,436(7501):686-688.

    Google Scholar

    [11] KLOTZBACH P J. Trends in global tropical cyclone activity over the past twenty years (1986-2005)[J]. Geophysical Research Letters,2006,33(331):3477-3495.

    Google Scholar

    [12] KNUTSON T R,MCBRIDE J L,CHAN J,et al. Tropical cyclones and climate change[J]. Nature Geoscience,2010,7(1):157-163. doi: 10.1038/ngeo779

    CrossRef Google Scholar

    [13] CHENG L,ABRAHAM J,HAUSFATHER Z,et al. How fast are the oceans warming?[J]. Science,2019,363(6423):128-129. doi: 10.1126/science.aav7619

    CrossRef Google Scholar

    [14] YUE Y,YU K,TAO S,et al. 3500-year western Pacific storm record warns of additional storm activity in a warming warm pool[J]. Palaeogeography,2019,521(1):57-71.

    Google Scholar

    [15] GEHRELS W R,KIRBY J R,PROKOPH A,et al. Onset of recent rapid sea-level rise in the western Atlantic Ocean[J]. Quaternary Science Reviews,2005,24(18/19):2083-2100. doi: 10.1016/j.quascirev.2004.11.016

    CrossRef Google Scholar

    [16] GEHRELS W R,MARSHALL W A,GEHRELS M J,et al. Rapid sea-level rise in the North Atlantic Ocean since the first half of the nineteenth century[J]. Holocene,2006,16(7):949-965. doi: 10.1177/0959683606hl986rp

    CrossRef Google Scholar

    [17] GEHRELS W R,DAWSON D A,SHAW J,et al. Using Holocene relative sea-level data to inform future sea-level predictions:an example from southwest England[J]. Global Planetary Change,2011,78(3/4):116-126.

    Google Scholar

    [18] GERLACH,M J,ENGELHART,S E,KEMP,A C,et al. Reconstructing Common Era relative sea-level change on the Gulf Coast of Florida[J]. Marine Geology,2017,390(1):254-269. doi: 10.1016/j.margeo.2017.07.001

    CrossRef Google Scholar

    [19] HAWKES A D,KEMP A C,DONNELLY J P,et al. Relative sea-level change in northeastern Florida (USA) during the last 8.0 ka[J]. Quaternary Science Reviews,2016,142(15):90-101.

    Google Scholar

    [20] KEMP A C,HORTON B P,CULVER S J,et al. Timing and magnitude of recent accelerated sea-level rise (North Carolina,United States)[J]. Geology,2009,37(11):1035-1038. doi: 10.1130/G30352A.1

    CrossRef Google Scholar

    [21] KEMP A C,HORTON B P,VANN D R,et al. Quantitative vertical zonation of salt-marsh foraminifera for reconstructing former sea level: an example from New Jersey,USA[J]. Quaternary Science Reviews,2012,54(9):26-39.

    Google Scholar

    [22] KEMP A C,TELFORD R J,HORTON B P,et al. Reconstructing Holocene sea level using salt-marsh foraminifera and transfer functions:lessons from New Jersey,USA[J]. Journal of Quaternary Science,2013,28(6):617-629. doi: 10.1002/jqs.2657

    CrossRef Google Scholar

    [23] KEMP A C,HORTON B P,Vane C H,et al. Sea-level change during the last 2500 years in New Jersey,USA[J]. Quaternary Science Reviews,2013,81(1):90-104.

    Google Scholar

    [24] KEMP A C,BERNHARDT C E,HORTON B P,et al. Late Holocene sea- and land-level change on the U. S. southeastern Atlantic coast[J]. Marine Geology,2014,357(1):90-100.

    Google Scholar

    [25] KEMP A C,HAWKES A D,DONNELLY J P,et al. Relative sea-level change in Connecticut (USA) during the last 2200 yrs[J]. Earth Planetary Science Letters,2015,428(15):217-229.

    Google Scholar

    [26] KEMP A C,KEGEL J J,CULVER S J,et al. Extended late Holocene relative sea-level histories for North Carolina,USA[J]. Quaternary Science Reviews,2017,160(15):13-30.

    Google Scholar

    [27] KEMP A C,WRIGHT A J,EDWARDS R J,et al. Relative sea-level change in Newfoundland,Canada during the past ~3000 years[J]. Quaternary Science Reviews,2018,201(1):89-110.

    Google Scholar

    [28] LEORRI E,FATELA F,DRAGO T,et al. Lateglacial and Holocene coastal evolution in the Minho Estuary (N Portugal):implications for understanding sea-level changes in Atlantic Iberia[J]. Holocene,2013,23(3):353-63. doi: 10.1177/0959683612460786

    CrossRef Google Scholar

    [29] LEORRI E,CEARRETA A,JESÚS M,et al. Anthropogenic disruptions of the sedimentary record in coastal marshes:examples from the southern Bay of Biscay (N. Spain)[J]. Continental Shelf Research,2014,86(1):132-140.

    Google Scholar

    [30] LONG A J,WOODROFFE S A,MILNE G A,et al. Relative sea-level change in Greenland during the last 700yrs and ice sheet response to the Little Ice Age[J]. Earth and Planetary Science Letters,2012,315/316(1):76-85. doi: 10.1016/j.jpgl.2011.06.027

    CrossRef Google Scholar

    [31] LONG A J,BARLOW N,GEHRELS W R,et al. Contrasting records of sea-level change in the eastern and western North Atlantic during the last 300 years[J]. Earth Planetary Science Letters,2014,388(15):110-122.

    Google Scholar

    [32] LONG A J,BARLOW N L M,BUSSCHERS F S,et al. Near-field sea-level variability in northwest Europe and ice sheet stability during the last interglacial[J]. Quaternary Science Reviews,2015,126(15):26-40.

    Google Scholar

    [33] PIECUCH C G,HUYBERS P,HAY C C,et al. Origin of spatial variation in US East Coast sea-level trends during 1900–2017[J]. Nature,2018,564(7736):400-404. doi: 10.1038/s41586-018-0787-6

    CrossRef Google Scholar

    [34] SIVAN D,LAMBECK K,TOUEG R,et al. Ancient coastal wells of Caesarea Maritima,Israel,an indicator for relative sea level changes during the last 2000 years[J]. Earth Planetary Science Letters,2004,222(1):315-330. doi: 10.1016/j.jpgl.2004.02.007

    CrossRef Google Scholar

    [35] SZKORNIK K,GEHRELS W R,MURRAY A S. Aeolian sand movement and relative sea-level rise in Ho Bugt,western Denmark,during the `Little Ice Age'.[J]. Holocene,2008,18(16):951-965.

    Google Scholar

    [36] GARCÍA-ARTOLA A,STÉPHAN P,CEARRETA A,et al. Holocene sea-level database from the Atlantic coast of Europe[J]. Quaternary Science Reviews,2018,196(15):177-192.

    Google Scholar

    [37] ROSENTAU A,KLEMANN V,BENNIKE O,et al. A Holocene relative sea-level database for the Baltic Sea[J]. Quaternary Science Reviews,2021,266(15):107071.

    Google Scholar

    [38] VACCHI M,ENGELHART S,E,NIKITINA D,et al. Postglacial relative sea-level histories along the eastern Canadian coastline[J]. Quaternary Science Reviews,2018,201(1):124-146.

    Google Scholar

    [39] ENGELHART S E,HORTON B P. Holocene sea level database for the Atlantic coast of the United States[J]. Quaternary Science Reviews,2012,54(26):12-25.

    Google Scholar

    [40] BONADUCE A,PINARDI N,ODDO P,et al. Sea-level variability in the Mediterranean Sea from altimetry and tide gauges[J]. Climate Dynamics,2016,47(9/10):2851-2866. doi: 10.1007/s00382-016-3001-2

    CrossRef Google Scholar

    [41] CHEN X,ZHANG X,CHURCH J A,et al. The increasing rate of global mean sea-level rise during 1993–2014[J]. Nature Climate Change,2017,7(7):492-495. doi: 10.1038/nclimate3325

    CrossRef Google Scholar

    [42] CHURCH J A,WHITE N J. A 20th century acceleration in global sea-level rise[J]. Geophysical Research Letters,2006,33(1):33.

    Google Scholar

    [43] CHURCH J A,WHITE N J. Sea-level rise from the late 19th to the early 21st century[J]. Surveys in Geophysics,2011,32(4):585-602.

    Google Scholar

    [44] DEAN R G,HOUSTON J R. Recent sea level trends and accelerations:comparison of tide gauge and satellite results[J]. Coastal Engineering,2013,75(May):4-9. doi: 10.1016/j.coastaleng.2013.01.001

    CrossRef Google Scholar

    [45] FENOGLIO-MARC L,BRAITENBERG C,TUNINI L. Sea level variability and trends in the Adriatic Sea in 1993–2008 from tide gauges and satellite altimetry[J]. Physics Chemistry of the Earth,2012,40-41:47-58. doi: 10.1016/j.pce.2011.05.014

    CrossRef Google Scholar

    [46] THOMSON R E,CANDELLA R N,RABINOVICH A B. Energy decay of the 2004 Sumatra Tsunami in the world ocean[J]. Pure and Applied Geophysics,2011,168(11):1919-1950.

    Google Scholar

    [47] GUO J,WANG J,HU Z,et al. Vertical land movement over China coasts determined by tide gauge and satellite altimetric data[J]. Arabian Journal of Geosciences,2016,9(3):168. doi: 10.1007/s12517-015-2219-3

    CrossRef Google Scholar

    [48] PFEFFER J,ALLEMAND P. The key role of vertical land motions in coastal sea level variations:a global synthesis of multisatellite altimetry,tide gauge data and GPS measurements[J]. Earth and Planetary Science Letters,2016,439(1):39-47. doi: 10.1016/j.jpgl.2016.01.027

    CrossRef Google Scholar

    [49] 郑景云,邵雪梅,郝志新,等. 北半球千年尺度气候高分辨率数据集研制及可靠性研究[J]. 中国基础科学,2017,19(6):1-8. doi: 10.3969/j.issn.1009-2412.2017.06.001

    CrossRef Google Scholar

    [50] MARSHALL J,SPEER K. Closure of the meridional overturning circulation through Southern Ocean Upwelling[J]. Nature Geoscience,2012,5(3):171-180. doi: 10.1038/ngeo1391

    CrossRef Google Scholar

    [51] ZACHOS J S, PAGANI M, SLOAN L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science 2001, 292(5517): 686-693.

    Google Scholar

    [52] 陆钧,陈木宏. 新生代主要全球气候事件研究进展[J]. 热带海洋学报,2006,25(6):72-79. doi: 10.3969/j.issn.1009-5470.2006.06.013

    CrossRef Google Scholar

    [53] CARTER R M,GAMMON P. New Zealand maritime glaciation:millennial-scale southern climate change since 3.9 Ma[J]. Science,2004,304(5677):1659-1662. doi: 10.1126/science.1093726

    CrossRef Google Scholar

    [54] 李娟,左军成,谭伟,等. 21世纪格陵兰冰川融化速率对海平面变化的影响[J]. 海洋学报,2015,37(7):22-32.

    Google Scholar

    [55] 王绍鸿. 海平面标志物识别的一些问题[J]. 台湾海峡,1989,8(4):45-53.

    Google Scholar

    [56] 聂宝符,陈特固. 雷州半岛珊瑚礁与全新世高海面[J]. 科学通报,1997,42(5):4.

    Google Scholar

    [57] ENGELHART S E,HORTON B P,KEMP A C. Holocene sea level changes along the United States' Atlantic Coast[J]. Oceanography,2011,24(2):70-79. doi: 10.5670/oceanog.2011.28

    CrossRef Google Scholar

    [58] SMITHERS S. Sea-level Indicators,in:Hopley,D. (Ed. ),encyclopedia of modern coral reefs:structure,form and process[J]. Springer Netherlands,2011,Dordrecht:978-991.

    Google Scholar

    [59] KEMP,A C,HORTON,B P,DONNELLY,J P,et al. Climate related sea-level variations over the past two millennia[J]. Proc Natl Acad Sci USA,2011,108:11017-11022. doi: 10.1073/pnas.1015619108

    CrossRef Google Scholar

    [60] CORTIJO E,DUPLESSY J C,LABEYRIE L,et al. Eemian cooling in the Norwegian Sea and North Atlantic Ocean preceding continental ice-sheet growth[J]. Nature,1994,372(6505):446-449. doi: 10.1038/372446a0

    CrossRef Google Scholar

    [61] JINNA H E,SHA L,LIU Y,et al. Diatom assemblages from surface sediments,west of Greenland[J]. Marine Geology amd Quaternary Geology,2011,31(4):125-130.

    Google Scholar

    [62] ALISA V B A,NICOLE S K B,FEDOR A R A,et al. A postglacial relative sea-level database for the Russian Arctic coast[J]. Quaternary Science Reviews,2018,199(1):188-205.

    Google Scholar

    [63] SHENNAN I,HORTON B. Holocene land- and sea-level changes in Great Britain[J]. Journal of Quaternary Science,2002,17(5/6):511-526.

    Google Scholar

    [64] STUIVER M, REIMER P J, REIMER R W. Calib 8.2 [EB/OL]. [2021-12-04]. http://calib.org, 2021.

    Google Scholar

    [65] REIMER P J,AUSTIN W E N,BARD E,et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0-55 kcal BP)[J]. Radiocarbon,2020,62(4):725-757. doi: 10.1017/RDC.2020.41

    CrossRef Google Scholar

    [66] HEATON T J,KHLER P,BUTZIN M,et al. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP)[J]. Radiocarbon,2020,62(4):779-820. doi: 10.1017/RDC.2020.68

    CrossRef Google Scholar

    [67] SCOURSE J D,WANAMAKER A D,WEIDMAN C,et al. The marine radiocarbon bomb pulse across the temperate North Atlantic:a compilation of Δ14C time histories from arctica islandica growth increments[J]. Radiocarbon,2012,54(2):165-186. doi: 10.2458/azu_js_rc.v54i2.16026

    CrossRef Google Scholar

    [68] WANAMAKER A D,BUTLER P G,SCOURSE J D,et al. Surface changes in the North Atlantic meridional overturning circulation during the last millennium[J]. Nature Communications,2012,3(1):899. doi: 10.1038/ncomms1901

    CrossRef Google Scholar

    [69] TISNÉRAT-LABORDE N,PATERNE M,MÉTIVIER B,et al. Variability of the northeast Atlantic sea surface D14C and marine reservoir age and the North Atlantic Oscillation (NAO)[J]. Quaternary Science Reviews,2010,29(1):2633-2646.

    Google Scholar

    [70] LOUGHEED B C,FILIPSSON H L,SNOWBALL I. Large spatial variations in coastal 14C reservoir age - a case study from the Baltic Sea[J]. Climate of the Past,2013,9(3):1015-1028. doi: 10.5194/cp-9-1015-2013

    CrossRef Google Scholar

    [71] REIMER P J,MCCORMAC F G. Marine radiocarbon reservoir corrections for the Mediterranean and Aegean Seas[J]. Radiocarbon,2002,44(1):159. doi: 10.1017/S0033822200064766

    CrossRef Google Scholar

    [72] FAIVRE,BAKRAN-PETRICIOLI S,BAREŠIĆ T,et al. Marine radiocarbon reservoir age of the coralline intertidal alga Lithophyllum byssoides in the Mediterranean[J]. Quaternary geochronology,2019,51:15-23. doi: 10.1016/j.quageo.2018.12.002

    CrossRef Google Scholar

    [73] FORMAN S L,POLYAK L. Radiocarbon content of pre-bomb marine mollusks and variations in the 14C Reservoir age for coastal areas of the Barents and Kara Seas,Russia[J]. Geophysical Research Letters,1997,24(8):885-888. doi: 10.1029/97GL00761

    CrossRef Google Scholar

    [74] KUZMIN Y V,NEVESSKAYA L A,Krivonogov S K,et al. Apparent 14C ages of the 'pre-bomb' shells and correction values ( R,Δ R) for Caspian and Aral Seas (Central Asia)[J]. Nuclear Inst & Methods in Physics Research B,2007,259(1):463-466.

    Google Scholar

    [75] DUTTA K,BHUSHAN R,SOMAYAJULU B. ΔR correction values for the northern Indian Ocean[J]. Radiocarbon,2016,43(2A):483-488.

    Google Scholar

    [76] HADDEN C,CHERKINSKY A. 14C variations in pre-bomb nearshore habitats of the Florida Panhandle,USA[J]. Radiocarbon,2015,57(3):1-9.

    Google Scholar

    [77] Hadden C S,Cherkinsky A. Carbon reservoir effects in eastern Oyster from Apalachicola Bay,USA[J]. Radiocarbon,2017,59(5):1-10.

    Google Scholar

    [78] Permanent service for mean sea level (PSMSL). tide gauge data, retrieved 01 Nov 2021. [EB/OL]. [2021-12-04]. http://www.psmsl.org/data/obtaining/.

    Google Scholar

    [79] SIMON J,HOLGATE A M P L,WOODWORTH L J,et al. New data systems and products at the permanent service for mean sea level[J]. Journal of Coastal Research,2013,3(29):493-504.

    Google Scholar

    [80] VAREKAMP J C, THOMAS E, PLASSCHE O. Relative sea-level rise and climate change over the last 1500years (Clinton, CT, USA)[J]. Terra Nova,1992,4(3):29-304.

    Google Scholar

    [81] DEAN S,HORTON B P,EVELPIDOU N,et al. Can we detect centennial sea-level variations over the last three thousand years in Israeli archaeological records?[J]. Quaternary Science Reviews,2019,210(15):125-135.

    Google Scholar

    [82] SAHER M H,GEHRELS W R,BARLOW N,et al. Sea-level changes in Iceland and the influence of the North Atlantic Oscillation during the last half millennium[J]. Quaternary Science Reviews,2015,108(15):23-36.

    Google Scholar

    [83] STÉPHAN P,GOSLIN J M,PAILLER Y,et al. Holocene salt-marsh sedimentary infilling and relative sea-level changes in West Brittany (France) using foraminifera-based transfer functions[J]. Boreas,2015,44(1):153-177. doi: 10.1111/bor.12092

    CrossRef Google Scholar

    [84] GARCIA-ARTOLA A,CEARRETA A,LEORRI E,et al. Coastal salt-marshes as geological archives of recent sea-level changes[J]. Geogaceta,2009,47:109-112.

    Google Scholar

    [85] LEORRI E,HORTON B P,CEARRETA A. Development of a foraminifera-based transfer function in the Basque marshes,N. Spain:implications for sea-level studies in the Bay of Biscay[J]. Marine Geology,2008,251(1/2):60-74.

    Google Scholar

    [86] BARNETT R L,BERNATCHEZ P,GARNEAU M,et al. Late Holocene sea-level changes in eastern Québec and potential drivers[J]. Quaternary Science Reviews,2019,203(1):151-169.

    Google Scholar

    [87] DONNELLY J P,CLAERY P,NEWBY P,et al. Coupling instrumental and geological records of sea-level change:Evidence from southern New England of an increase in the rate of sea-level rise in the late 19th century[J]. Geophysical Research Letters,2004,31:L05203.

    Google Scholar

    [88] GONZÁLEZ J E. A new Late Holocene sea-level record from the Mississippi Delta:evidence for a climate/sea level connection?[J]. Quaternary ence Reviews,2009,28(17/18):1737-1749.

    Google Scholar

    [89] BARLOW N L M, LONG A J, SAHER M H, et al. Salt-marsh reconstructions of relative sea-level change in the North Atlantic during the last 2000 years[J]. Quaternary Science Reviews 2014, 99(1): 1-16.

    Google Scholar

    [90] GEHRELS W R,SZKORNIK K,BA RTHOLDY J,et al. Late Holocene sea-level changes and isostasy in western Denmark[J]. Quaternary Research,2006,66(2):288-302. doi: 10.1016/j.yqres.2006.05.004

    CrossRef Google Scholar

    [91] BARNETT R L,BERNATCHEZ P,GARNEAU M,et al. Reconstructing late Holocene relative sea-level changes at the Magdalen Islands (Gulf of St. Lawrence,Canada) using multi-proxy analyses[J]. Journal of Quaternary Science,2017,32(3):380-395. doi: 10.1002/jqs.2931

    CrossRef Google Scholar

    [92] GEHRELS W R,DANGENDORF S,BARLOW N L M,et al. A Preindustrial sea-level rise hotspot along the Atlantic coast of North America[J]. Geophysical Research Letters,2020,47(4):e2019GL085814.

    Google Scholar

    [93] KEMP A C,HILL T D,VANE C H,et al. Relative sea-level trends in New York City during the past 1500 years[J]. The Holocene,2017,27(8):1169-1186. doi: 10.1177/0959683616683263

    CrossRef Google Scholar

    [94] WALKER J S,KOPP R E,SHAW T A,et al. Common Era sea-level budgets along the U. S. Atlantic coast[J]. Nature Communications,2021,12(1):1841. doi: 10.1038/s41467-021-22079-2

    CrossRef Google Scholar

    [95] HANSEN B,ØSTERHUS S. North Atlantic–Nordic Seas exchanges[J]. Progress in Oceanography,2000,45(2):109-208. doi: 10.1016/S0079-6611(99)00052-X

    CrossRef Google Scholar

    [96] HUI J,MARIT-SOLVEIG S,KNUDSEN LUISE K,et al. Late-Holocene summer sea-surface temperatures based on a diatom record from the north Icelandic shelf[J]. Holocene,2002,12(2):137-147.

    Google Scholar

    [97] STUIVER M,GROOTES P M,BRAZIUNAS T F. The GISP2 δ18O climate record of the past 16,500 years and the role of the sun,ocean,and volcanoes[J]. Quaternary Research,1995,44(3):341-354. doi: 10.1006/qres.1995.1079

    CrossRef Google Scholar

    [98] FREDERIKSE T,LANDERER F,CARON L,et al. The causes of sea-level rise since 1900[J]. Nature,2020,584(7821):393-397. doi: 10.1038/s41586-020-2591-3

    CrossRef Google Scholar

    [99] KOPP R E,KEMP A C,BITTERMANN K,et al. Temperature-driven global sea-level variability in the Common Era[J]. Proc Natl Acad Sci USA,2016,113(11):1434-1441.

    Google Scholar

    [100] PLASSCHE O,BORG K,JONG A M. Sea level–climate correlation during the past 1400 yr[J]. Geology,1998,26(4):319-322. doi: 10.1130/0091-7613(1998)026<0319:SLCCDT>2.3.CO;2

    CrossRef Google Scholar

    [101] MILNE G A,GEHRELS W R,HUGHES C W,et al. Identifying the causes of sea-level change[J]. Nature Geoscience,2009,2(7):471-478. doi: 10.1038/ngeo544

    CrossRef Google Scholar

    [102] PELTIER,W R. Postglacial variations in the level of the sea:implications for climate dynamics and solid-Earth geophysics[J]. Reviews of Geophysics,1998,36(4):603-689. doi: 10.1029/98RG02638

    CrossRef Google Scholar

    [103] 汪汉胜,Patrick W U,许厚泽. 冰川均衡调整(GIA)的研究[J]. 地球物理学进展,2009,24(6):1958-1967. doi: 10.3969/j.issn.1004-2903.2009.06.005

    CrossRef Google Scholar

    [104] JÉRME G A,BRIGITTE V V L B,GIORGIO S C,et al. A new Holocene relative sea-level curve for western Brittany (France):insights on isostatic dynamics along the Atlantic coasts of north-western Europe[J]. Quaternary Science Reviews,2015,129(1):341-365.

    Google Scholar

    [105] MATTHEW J, BRAIN A J, LONG S A, et al. Modelling the effects of sediment compaction on salt marsh reconstructions of recent sea-level rise[J]. Earth Planetary Science Letters, 2012, 345/348(1): 180-193.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(1)

Article Metrics

Article views(2857) PDF downloads(545) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint