2022 Vol. 38, No. 4
Article Contents

ZHAO Shaohua, WANG Yaning, ZHANG Shangfeng, ZHU Rui, XU Enze, YI Zhifeng, GONG Gaoyang, WANG Yuyao, LIU Haotong. Miocene paleoclimate analysis of the northern South China Sea:response to cooling events based on astronomical cycles[J]. Marine Geology Frontiers, 2022, 38(4): 53-62. doi: 10.16028/j.1009-2722.2021.266
Citation: ZHAO Shaohua, WANG Yaning, ZHANG Shangfeng, ZHU Rui, XU Enze, YI Zhifeng, GONG Gaoyang, WANG Yuyao, LIU Haotong. Miocene paleoclimate analysis of the northern South China Sea:response to cooling events based on astronomical cycles[J]. Marine Geology Frontiers, 2022, 38(4): 53-62. doi: 10.16028/j.1009-2722.2021.266

Miocene paleoclimate analysis of the northern South China Sea:response to cooling events based on astronomical cycles

More Information
  • Rich oil and gas resources occur in the northern South China Sea. To analyze the Miocene paleoclimate is of great significance to oil and gas exploration in the region. In this paper, spectrum analysis and filtering method of the Matlab software are used to process the natural gamma logging curves from 1 949.12 m to 2 020 m of the Well A in the middle of the Huilu Low Uplift of the Pearl River Mouth Basin, and the paleoclimatic events in corresponding time periods are accurately predicted and the origins of the events revealed. The results suggest that the power spectrum of the GR data series shows depositional cycles of 68.8 m, 16.99 m, 7.81 m and 3.74 m. And it is deduced that the deposition cycles of 68.8 m and 16.99 m correspond to the long eccentricity signal of 405 ka and the short eccentricity signal of 100 ka, respectively. The deposition cycle of 7.81 m corresponds to the slope periodic signal of 46 ka, and the deposition cycle of 3.74 m corresponds to the precession periodic signal of 22 ka. The deposits penetrated by the well recorded perfectly the astronomical orbital signals (eccentricity, slope, precession). According to the established astronomical chronology, the geological age of the whole Hanjiang Formation is approximately in the range of 10.2~16.5 Ma, and a cooling event may have occurred between 14 Ma and 15 Ma due to the decrease in eccentricity amplitude.

  • 加载中
  • [1] ZACHOS J,PAGANI M,SLOAN L,et al. Trends,rhythms,and aberrations in global climate 65 Ma to present.[J]. Science,2001,292(5517):686-693. doi: 10.1126/science.1059412

    CrossRef Google Scholar

    [2] 张立海, 刘凤民, 张业成. 青藏高原隆起对中国地质自然环境影响[C]//青藏高原地质过程与环境灾害效应文集. 中国地质学会, 中国地震学会, 2005.

    Google Scholar

    [3] 薛莉,张世涛. 中国中新世地质事件、古气候对桦木属(桦木科)植物影响及其主要分布地层简述[J]. 中国水运,2019,19(4):122-123.

    Google Scholar

    [4] 薛力园. 南海北部陆丰凹陷中新世古环境演化研究[D]. 北京: 中国地质大学(北京), 2019.

    Google Scholar

    [5] XING Y,UTESCHER T,JACQUES F M B,et al. Paleoclimatic estimation reveals a weak winter monsoon in southwestern China during the Late Miocene:evidence from plant macrofossils[J]. Palaeogeography Palaeoclimatology Palaeoecology,2012,358/360:19-26. doi: 10.1016/j.palaeo.2012.07.011

    CrossRef Google Scholar

    [6] 刘欣雨, 张旗, 张成立, 等. 中新世全球重要事件及其意义: 数据挖掘的启示[J].科学通报, 2017, 62(15): 1645-1654.

    Google Scholar

    [7] 李玲, 郑洪波, 赵良, 等. 中新世以来长江下游和黄土高原地区黏土矿物的时空变化及古气候意义[J]. 古地理学报, 2011, 13(3): 355-362.

    Google Scholar

    [8] 李凤杰,王多云,郑希民,等. 测井曲线频谱分析在含煤地层沉积旋回研究中的应用[J]. 煤田地质与勘探,2003,31(6):14-18. doi: 10.3969/j.issn.1001-1986.2003.06.005

    CrossRef Google Scholar

    [9] 李新虎. 测井曲线拐点在测井层序地层分析中的应用研究[J]. 天然气地球科学,2006,17(6):815-819. doi: 10.3969/j.issn.1672-1926.2006.06.016

    CrossRef Google Scholar

    [10] 李凤杰,赵俊兴. 基于Matlab的测井曲线频谱分析及其在地质研究中的应用:以川东北地区二叠系长兴组为例[J]. 天然气地球科学,2007,18(4):531-534. doi: 10.3969/j.issn.1672-1926.2007.04.009

    CrossRef Google Scholar

    [11] 赵庆乐,张世红,王婷婷,等. 利用Matlab函数识别沉积物中的米兰柯维奇旋回信号[J]. 吉林大学学报(地球科学版),2010,40(5):1217-1220.

    Google Scholar

    [12] 高迪,郭变青,邵龙义,等. 基于MATLAB的小波变换在沉积旋回研究中的应用[J]. 物探化探计算技术,2012,34(4):444-448. doi: 10.3969/j.issn.1001-1749.2012.04.14

    CrossRef Google Scholar

    [13] 刘洋,吴怀春,张世红,等. 珠江口盆地珠一坳陷韩江组-万山组旋回地层学[J]. 地球科学:中国地质大学学报,2012,37(3):411-423.

    Google Scholar

    [14] 秦国权. 珠江口盆地新生代地层问题讨论及综合柱状剖面图编制[J]. 中国海上油气(地质),2000,14(1):22-29.

    Google Scholar

    [15] 范时清,廖健雄. 中国南海北部新生代古环境的变迁[J]. 广西科学院学报,2005,2(1):51-55. doi: 10.3969/j.issn.1002-7378.2005.01.012

    CrossRef Google Scholar

    [16] 邓宏文,郑文波. 珠江口盆地惠州凹陷古近系珠海组近海潮汐沉积特征[J]. 现代地质,2009,23(5):767-775. doi: 10.3969/j.issn.1000-8527.2009.05.001

    CrossRef Google Scholar

    [17] 曾智伟. 南海北部珠江口盆地古近纪源-汇系统耦合研究[D]. 武汉: 中国地质大学(武汉), 2020.

    Google Scholar

    [18] 王福国,梅廉夫,施和生,等. 珠江口盆地珠一坳陷古近系构造样式分析[J]. 大地构造与成矿学,2008,32(4):448-454. doi: 10.3969/j.issn.1001-1552.2008.04.007

    CrossRef Google Scholar

    [19] 赵庆乐,吴怀春,李海燕,等. 利用采样定理与沉积速率确定旋回分析最佳采样间隔[J]. 地球科学:中国地质大学学报,2011,36(1):12-16.

    Google Scholar

    [20] 谢国根,郑俊. 基于Matlab小波分析的旋回划分及其地质意义:以东海盆地西湖凹陷保椒斜坡带平北段Pb-1井平湖组为例[J]. 新疆石油地质,2016,37(2):169-172.

    Google Scholar

    [21] 郑希民,郭彦如,刘化清,等. 应用自然伽玛测井曲线小波分析划分陆相坳陷盆地三级层序的方法:以鄂尔多斯盆地延长组为例[J]. 天然气地球科学,2006,17(5):672-676. doi: 10.3969/j.issn.1672-1926.2006.05.015

    CrossRef Google Scholar

    [22] 李江涛,李增学,余继峰,等. 基于测井数据小波变换的层序地层对比:以鲁西和济阳地区石炭、二叠系含煤地层为例[J]. 沉积学报,2005,23(4):639-645. doi: 10.3969/j.issn.1000-0550.2005.04.012

    CrossRef Google Scholar

    [23] 伊海生. 地层记录中旋回层序界面的识别方法及原理[J]. 沉积学报,2012,30(6):991-998.

    Google Scholar

    [24] 郭少斌,陈成龙. 利用米兰科维奇旋回划分柴达木盆地第四系层序地层[J]. 地质科技情报,2006,26(4):27-30. doi: 10.3969/j.issn.1000-7849.2006.04.005

    CrossRef Google Scholar

    [25] 唐闻强,伊海生,陈云,等. 基于测井曲线频谱分析米氏旋回特征:以柴西尕斯地区上干柴沟组为例[J]. 科学技术与工程,2021,21(11):4360-4368. doi: 10.3969/j.issn.1671-1815.2021.11.009

    CrossRef Google Scholar

    [26] 秦国权. 微体古生物在珠江口盆地新生代晚期层序地层学研究中的运用[J]. 海洋地质与第四纪地质, 1996, 16(4): 1-18.

    Google Scholar

    [27] 田世峰,陈中强,查明. 珠江口盆地中中新世韩江组天文调谐地质年代表[J]. 中国石油大学学报(自然科学版),2012,36(1):27-32. doi: 10.3969/j.issn.1673-5005.2012.01.005

    CrossRef Google Scholar

    [28] 徐健,德勒恰提·加娜塔依. 米兰科维奇旋回识别与天文标尺的建立:以莫索湾地区莫21井三工河组一段为例[J]. 地质科技通报,2021,40(2):197-207.

    Google Scholar

    [29] LASKAR J,ROBUTEL P,JOUTEL F,et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy and Astrophysics,2004,428(1):261-285. doi: 10.1051/0004-6361:20041335

    CrossRef Google Scholar

    [30] 田茜. 柴达木盆地新生代生物标志化合物特征与亚洲内陆干旱环境演化[D]. 北京: 中国科学院大学, 2017.

    Google Scholar

    [31] 薛力园,丁旋,万晓樵. 南海北部陆丰凹陷LF14井中新世浮游有孔虫生物地层研究[J]. 微体古生物学报,2017,34(3):320-332.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(2186) PDF downloads(308) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint