2021 Vol. 40, No. 12
Article Contents

LI Manlin, QI Jihong, XU Mo, ZHANG Guangze, ZHANG Xiaoyu, LI Xiao, YI Lei, CHANG Shuaipeng. Correction of heat storage temperature Mg2+ and analysis of heat damage mechanism of hydrothermal system in central and eastern Tibetan Plateau[J]. Geological Bulletin of China, 2021, 40(12): 2098-2109.
Citation: LI Manlin, QI Jihong, XU Mo, ZHANG Guangze, ZHANG Xiaoyu, LI Xiao, YI Lei, CHANG Shuaipeng. Correction of heat storage temperature Mg2+ and analysis of heat damage mechanism of hydrothermal system in central and eastern Tibetan Plateau[J]. Geological Bulletin of China, 2021, 40(12): 2098-2109.

Correction of heat storage temperature Mg2+ and analysis of heat damage mechanism of hydrothermal system in central and eastern Tibetan Plateau

More Information
  • Tunnel is an important engineering form of railway crossing the middle and eastern part of the Qinghai-Tibet Plateau.It is necessary to discuss the influencing factors of tunnel thermal disaster.The methods of tunnel heat damage prediction are comprehensive, among which the hydrogeochemical method is widely used because of its easy implementation and high cost performance.Heat storage temperature is an important parameter in the study of hydrothermal system.Due to the complexity of the heat storage system, it is difficult to fully consider the geochemical process in the calculation of heat storage temperature, and deviation may take place in heat storage temperature calculation.The Mg2+ correction of heat storage temperature is affected by the rock type, migration rate and structural conditions of heat storage under the action of hot water.Therefore, the Mg2+ correction can be used to assist the analysis of multi-type hydrothermal cycling mechanism.Based on this, the characteristics of heat damage encountered by the tunnel through the hydrothermal system can be identified.The Na-K-Ca triangle diagram of equilibrium judgment of Mg-rich system was constructed by using the equilibrium theory of temperature scale.Based on the geological background of hydrothermal system action, the equilibrium sample points were combed to discuss the relationship between the correction characteristics of Mg2+ and the influencing factors in the typical hydrothermal system in western Sichuan and eastern Tibet.The various types of hydrothermal cycling conditions, water-rock interaction, heat and mass transfer mechanism in central and eastern Qinghai-Tibet Plateau were analyzed and compared, which can assist in the analysis of hazards such as high rock temperature, hot water inrush and surrounding rock cracking caused by geothermal in engineering.This method is a methodological discussion about hydrogeochemical prediction of engineering heat damage, and can also provide a theoretical basis for heat damage prevention and control in the middle and eastern part of the Qinghai-Tibet Plateau and in the future.

  • 加载中
  • [1] 高芳芳, 邓睿, 陈伟, 等. 瓦纳温泉发育特征及其对隧道工程影响分析[J]. 铁道标准设计, 2019, 63(2): 115-119.

    Google Scholar

    [2] 马鑫, 付雷, 李铁锋, 等. 喜马拉雅东构造结地区地热成因分析[J]. 现代地质, 2021, 35(1): 209-219.

    Google Scholar

    [3] 孙会肖, 郎旭娟, 男达瓦, 等. 西藏萨迦冲曲流域地下热水成因及工程效应分析[J]. 安全与环境工程, 2021, 28(3): 147-155.

    Google Scholar

    [4] 孙杨艳, 刘声凯, 景营利. 郴州地热田地热温标的选取和热储温度计算[J]. 资源信息与工程, 2020, 35(1): 36-39.

    Google Scholar

    [5] 马致远, 李嘉祺, 翟美静, 等. 沉积型和火山型地热流体的同位素水文地球化学对比研究[J]. 水文地质工程地质, 2019, 46(6): 9-18.

    Google Scholar

    [6] 王轶, 童珏, 李晓龙, 等. 青海省曲乃亥温泉地质特征及成因分析[J]. 华东理工大学学报(自然科学版), 2020, 43(3): 248-256.

    Google Scholar

    [7] 王莹, 周训, 于湲, 等. 应用地热温标计算地下热储温度[J]. 现代地质, 2007, 21(4): 605-612. doi: 10.3969/j.issn.1000-8527.2007.04.003

    CrossRef Google Scholar

    [8] 郭静, 毛绪美, 童晟, 等. 水化学温度计计算粤西沿海深部地热系统热交换温度[J]. 地球科学, 2016, 41(12): 2075-2087.

    Google Scholar

    [9] 卢丽, 王喆, 邹胜章, 等. 四川昭觉县地热温度解析及成因模式[J]. 地质通报, 2021, 40(2/3): 434-441.

    Google Scholar

    [10] Fournier R O, Truesdell A H. An empirical Na-K-Ca geothermometer for natural waters[J]. Geochimica et Cosmochimica Acta, 1973, 37(5): 1255-1275. doi: 10.1016/0016-7037(73)90060-4

    CrossRef Google Scholar

    [11] Arnórsson S, Gunnlaugsson E, Svavarsson H. The chemistry of geothermal waters in Iceland III. Chemical geothermometry in geothermal investigations[J]. Geochimica et Cosmochimica Acta, 1983, 47(3): 567-577. doi: 10.1016/0016-7037(83)90278-8

    CrossRef Google Scholar

    [12] Arnórsson S, Sigurdsson S, Svavarsson H. The chemistry of geothermal waters in Iceland. I. Calculation of aqueous speciation from 0℃ to 370℃[J]. Geochimica et Cosmochimica Acta, 1982, 46: 1513-1532. doi: 10.1016/0016-7037(82)90311-8

    CrossRef Google Scholar

    [13] Arnórsson S, Gunnlaugsson E, Svavarsson H. The chemistry of geothermal waters in Iceland Ⅱ. Mineral equilibria and independent variables controlling water compositions[J]. Geochimica et Cosmochimica Acta, 1982, 47: 547-566.

    Google Scholar

    [14] Nieva D, Nieva R. Developments in geothe-rmal energy in Mexico-part twelve. A cationic geothermometer for prospecting of geothermal resources[J]. Heat Recovery Systems and CHP, 1987, 7(3): 243-258. doi: 10.1016/0890-4332(87)90138-4

    CrossRef Google Scholar

    [15] Giggenbach W F. Geothermal solute equilibria Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52(12): 2749-2765. doi: 10.1016/0016-7037(88)90143-3

    CrossRef Google Scholar

    [16] Giggenbach W F. Mass transfer in hydrothe-rmal alteration systems[J]. Geochimica et Cosmochimica Acta, 1984, 48: 2693-2711. doi: 10.1016/0016-7037(84)90317-X

    CrossRef Google Scholar

    [17] 夏跃珍, 王飞, 姚晶娟, 等. 地热系统热储温度评价方法探讨[J]. 能源与环境, 2014, (2): 10-11, 13. doi: 10.3969/j.issn.1672-9064.2014.02.004

    CrossRef Google Scholar

    [18] Fournier R O, Potter II R W. Magnesium correction to the Na-K-Ca chemical geothermometer[J]. Geochimica et Cosmochimica Acta, 1979, 43(9): 1543-1550. doi: 10.1016/0016-7037(79)90147-9

    CrossRef Google Scholar

    [19] Rybach L, Muffler L J P. 地热系统——原理和典型地热系统分析[M]. 北京大学地质学系地热研究室, 译. 北京: 地质出版社, 1986: 87-88.

    Google Scholar

    [20] 郑西来, 刘鸿俊. 地热温标中的水-岩平衡状态研究[J]. 西安地质学院学报, 1996, 18(1): 74-79.

    Google Scholar

    [21] 刘军强. 应用地热温标计算热储温度——以嵊州崇仁热水为例[J]. 西部探矿工程, 2014, 26(5): 129-132. doi: 10.3969/j.issn.1004-5716.2014.05.043

    CrossRef Google Scholar

    [22] 周立岱, 郭宇. 阳离子温标在中地温地热中的应用[J]. 黑龙江科技学院学报, 2006, (1): 27-30.

    Google Scholar

    [23] 陈履安. 贵州热矿水热储温度的计算[J]. 贵州地质, 1995, 12(1): 69-77.

    Google Scholar

    [24] 汪集旸, 熊亮萍, 庞忠和. 中低温对流地热系统[M]. 北京: 科学出版社, 1993.

    Google Scholar

    [25] 吴红梅, 周立岱, 郭宇. 阳离子温标在中低温地热中的应用研究[J]. 黑龙江科技学院学报, 2006, 16(1): 27-30.

    Google Scholar

    [26] 郭长宝, 王保弟, 刘建康, 等. 川藏铁路交通廊道地质调查工程主要进展与成果[J]. 中国地质调查, 2020, 7(6): 1-12.

    Google Scholar

    [27] Yi L, Qi J H, Li X, et al. Geochemical characteristics and genesis of the high-temperature geothermal systems in the north section of the Sanjiang Orogenic belt in southeast Tibetan Plateau[J]. Journal of Volcanology and Geothermal Research, 2021, 414: 107244. doi: 10.1016/j.jvolgeores.2021.107244

    CrossRef Google Scholar

    [28] Qi J H, Li X, Xu M, et al. Origin of saline springs in Yanjing, Tibet: Hydrochemical and isotopic characteristics[J]. Applied Geochemistry, 2018, 96: 164-176. doi: 10.1016/j.apgeochem.2018.06.013

    CrossRef Google Scholar

    [29] Tian J, Pang Z H, Liao D W, et al. Fluid geochemistry and its implications on the role of deep faults in the genesis of high temperature systems in the eastern edge of the Qinghai Tibet Plateau[J]. Applied Geochemistry, 2021, 131: 105036. doi: 10.1016/j.apgeochem.2021.105036

    CrossRef Google Scholar

    [30] 安成蛟. 康定-磨西断裂带地下热水水文地球化学特征及成因模式研究[D]. 成都理工大学硕士学位论文, 2017.

    Google Scholar

    [31] 李洁祥, 郭清海, 王焰新. 高温热田深部母地热流体的温度计算及其升流后经历的冷却过程: 以腾冲热海热田为例[J]. 地球科学-中国地质大学学报, 2015, 40(9): 1576-1584.

    Google Scholar

    [32] 王补宣. 工程传热传质学(上册)[M]. 北京: 科学出版社, 2015: 12-14.

    Google Scholar

    [33] 余恒昌. 矿山地热与热害治理[M]. 北京: 煤炭工业出版社, 1991: 54-55.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(935) PDF downloads(7) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint