2021 Vol. 40, No. 12
Article Contents

ZHAO Yuhao, YAO Zhongyou, WANG Tiangang, ZHU Yiping, ZHAO Xiaodan, JIANG Hantao. Zircon U-Pb geochronology and trace elements geochemistry of Hiltaba Suite in the north of Moonta-Wallaroo mining district, Yorke Peninsula, Gawler Craton, Australia[J]. Geological Bulletin of China, 2021, 40(12): 2167-2178.
Citation: ZHAO Yuhao, YAO Zhongyou, WANG Tiangang, ZHU Yiping, ZHAO Xiaodan, JIANG Hantao. Zircon U-Pb geochronology and trace elements geochemistry of Hiltaba Suite in the north of Moonta-Wallaroo mining district, Yorke Peninsula, Gawler Craton, Australia[J]. Geological Bulletin of China, 2021, 40(12): 2167-2178.

Zircon U-Pb geochronology and trace elements geochemistry of Hiltaba Suite in the north of Moonta-Wallaroo mining district, Yorke Peninsula, Gawler Craton, Australia

More Information
  • The Hiltaba Suite is widely developed in the Gawler Craton, South Australia, which is closely related to the IOCG deposits in the area. It is very important to find out the diagenetic age, diagenetic temperature and tectonic setting of the suite for the study of IOCG deposits. Zircon U-Pb dating of the augen granite collected from the north of the Moonta-Wallaroo mining district in the York Peninsula shows that the age is 1589 ±43 Ma, which is consistent with the magmatic event (1595~1575 Ma) of the Hiltaba Suite determined by previous geologists. According to zircon Ti thermometer, the diagenetic temperature of granite is 848~971℃, with an average of 878℃, which is close to that of A-type granite. The rare earth element patterns of zircon show the characteristics of LREE loss, HREE enrichment and left-dip, with obvious positive Ce anomaly and negative Eu anomaly, δCe varies widely (4.85~107.63) and δEu varies small (0.17~0.36). In the zircon Y-Yb/Dy and other discriminant diagrams, most of the samples fall within and near the within plate tectonic environment, and a few fall within and near the volcanic arc tectonic environment. In the zircon Hf-U/Yb and Y-Yb/Dy discriminant diagrams, the samples fall within the continental crust environment. Comprehensive analysis shows that the granite was formed in the tectonic setting of the evolution from the active continental margin to the intracontinental environment.

  • 加载中
  • [1] Perring C S, Pollard P J, Dong G, et al. The Lingtning Creek sill complex, Cloncurry district, Northwest Queensland: A source of fluids for Fe oxide Cu-Au mineralization and sodic-calcic alteration[J]. Economic Geology, 2000, 95(5): 1067-1089. doi: 10.2113/gsecongeo.95.5.1067

    CrossRef Google Scholar

    [2] Pollard P J. Evidence of a magmatic fluid and metal source for Fe-oxide Cu-Aumineralization[C]//Porter T M. Hydrothermal iron oxide copper-gold and related deposits: A global perspective. Adelaide: Australian Mineral Foundation, 2000: 27-41.

    Google Scholar

    [3] Pollard P J. An intrusion-related origin for Cu-Au mineralization in iron oxide-copper-gold(IOCG) provinces[J]. Mineralium Deposita, 2006, 41(2): 179-187. doi: 10.1007/s00126-006-0054-x

    CrossRef Google Scholar

    [4] Sillitoe R H. Iron oxide-copper-gold deposits: an Andean view[J]. Mineralium Deposita, 2003, 38(7): 787-812. doi: 10.1007/s00126-003-0379-7

    CrossRef Google Scholar

    [5] 毛景文, 余金杰, 袁顺达, 等. 铁氧化物-铜-金(IOCG)型矿床: 基本特征、研究现状与找矿勘查[J]. 矿床地质, 2008, 27(3): 267-278. doi: 10.3969/j.issn.0258-7106.2008.03.001

    CrossRef Google Scholar

    [6] 聂凤军, 江思宏, 路彦明. 氧化铁型铜-金(IOCG)型矿床的地质特征、成因机理与找矿模型[J]. 中国地质, 2008, 35(6): 1074-1087. doi: 10.3969/j.issn.1000-3657.2008.06.005

    CrossRef Google Scholar

    [7] 赵宇浩, 毛大华, 王天刚, 等. 智利Candelaria-Punta del Cobre铁氧化物铜金矿床地质和成矿作用简[J]. 地质通报, 2017, 36(12): 2296-2307.

    Google Scholar

    [8] Reid A J. The Olympic Cu-Au Province, Gawler Craton: A Review of the Lithospheric Architecture, Geodynamic Setting, Alteration Systems, Cover Successions and Prospectivity[J]. Minerals, 2019, 9: 1-37.

    Google Scholar

    [9] Creaser R A. Petrogenesis of a Mesoproterozoic quartz latite-granitoid suite from the Roxby Downs area, South Australia[J]. Precambrian Research, 1996, 79(3): 371-394.

    Google Scholar

    [10] Budd A R. A- and I-type subdivision of the Gawler Ranges-Hiltaba Volcano-Plutonic Association[J]. Geochimica et Cosmochimica Acta, 2006, 70(18-supp-S): A72.

    Google Scholar

    [11] Chapman N, Ferguson M, Meffre S, et al. Pb-isotopic constraints on the source of A-type Suites: Insights from the Hiltaba Suite-Gawler Range Volcanics Magmatic Event, Gawler Craton, South Australia[J]. Lithos, 2019, 346/347: 1-18.

    Google Scholar

    [12] Brotodewo A, Tiddy C J, Reid A, et al. Relationships between magmatism and deformation in northern Yorke Peninsula and southeastern Proterozoic Australia[J]. Australian Journal of Earth Sciences, 2018, 65: 619-641. doi: 10.1080/08120099.2018.1470573

    CrossRef Google Scholar

    [13] 姚仲友, 王天刚, 王国平, 等. 大洋洲地区优势矿产资源潜力评价[M]. 科学出版社, 2015: 99-107.

    Google Scholar

    [14] 姚仲友, 王天刚, 傅朝义, 等. 大洋洲地区大地构造格架与优势矿产资源[J]. 地质通报, 2014, 33(2/3): 143-158.

    Google Scholar

    [15] Reid A J, Fabris A. Influence of pre-existing low metamorphic grade sedimentary sucessions on the distribution of iron oxide-copper-gold mineralization in the Olympic Cu-Au province, Gawler craton[J]. Economic Geology, 2015, 110: 2147-2157 doi: 10.2113/econgeo.110.8.2147

    CrossRef Google Scholar

    [16] 丁绍磊. 澳大利亚南澳省Hillside与Olympic Dam铁氧化物铜-金矿床(IOCG)对比研究[D]. 成都理工大学硕士学位论文, 2016.

    Google Scholar

    [17] Reid A J. Geology and metallogeny of the Gawler Craton[C]//Phillips G N. Australian Ore Deposits. Melbourne: The Australian Institute of Mining and Metallrugy, 2017: 589-594.

    Google Scholar

    [18] Allen S R, McPhie J, Ferris G, et al. Evolution and architecture of a large felsic igneous province in western Laurentia: the 1.6 Ga Gawler Range Volcanics, South Australia[J]. Journal of Volcanology and Geothermal Research, 2008, 172: 132-147. doi: 10.1016/j.jvolgeores.2005.09.027

    CrossRef Google Scholar

    [19] Haynes D W, Cross K C, Bills R T, et al. Olympic Dam ore genesis; a fluid-mixing model[J]. Economic Geology, 1995, 90(2): 281-307. doi: 10.2113/gsecongeo.90.2.281

    CrossRef Google Scholar

    [20] Belperio A, Flint R, Freeman H. Prominent Hill-a hematite-dominated, iron-oxide copper-gold system[J]. Economic Geology, 2007, 102(8): 1499-1510. doi: 10.2113/gsecongeo.102.8.1499

    CrossRef Google Scholar

    [21] McPhie J, Kamenetsky V S, Chambefort I, et al. Origin of the supergiant Olympic Dam Cu-U-Au-Ag deposit, South Australia: was a sedimentary basin involved?[J]. Geology, 2011, 39(8): 795-798.

    Google Scholar

    [22] Ferris G M, Schwarz M P. Proterozoic gold province of the Central Gawler Craton[J]. MESA Journal, 2003, 30: 4-12.

    Google Scholar

    [23] Mortimer G E, Cooper J A, Oliver R L. The geochemical evolution of Proterozoic granitoids near Port Lincoln in the Gawler orogenic domain of South Australia[J]. Precambrian Research, 1988, 40/41: 387-406. doi: 10.1016/0301-9268(88)90077-0

    CrossRef Google Scholar

    [24] Reid A, Hand M, Jagodzinski E, et al. Paleoproterozoic orogenesis in the southeastern Gawler craton, South Australia[J]. Australian Journal of Earth Sciences, 2008, 55: 449-471. doi: 10.1080/08120090801888594

    CrossRef Google Scholar

    [25] Slama J, Kosler J, Condon D J, et al. Plešovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1/2): 1-35.

    Google Scholar

    [26] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. The Geological Society, London, Special Publications, 1989, 42(1): 313-345.

    Google Scholar

    [27] Dubińska E, Bylinab P, Kozowskia A, et al. U-Pb dating of serpentinization: Hydrothermal zircon from ametasomatic rodingite shell(Sudetic ophiolite, SW Poland)[J]. Chemical Geology, 2004, 203(3/4): 183-203.

    Google Scholar

    [28] Schaltegger U. Hydrothermal zircon[J]. Elements, 2007, 3(1): 51-79. doi: 10.2113/gselements.3.1.51

    CrossRef Google Scholar

    [29] 赵振华. 副矿物微量元素地球化学特征在成岩成矿作用研究中的应用[J]. 地学前缘, 2010, 17(1): 267-286.

    Google Scholar

    [30] Hoskin P W O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 2005, 69(3): 637-648. doi: 10.1016/j.gca.2004.07.006

    CrossRef Google Scholar

    [31] 范飞鹏, 陈乐柱, 李海立, 等. 南岭东段枫树洞稀土矿中辉长质包体锆石U-Pb年代学, 地球化学特征及其成岩作用[J]. 华东地质, 2020, 41(4): 325-338.

    Google Scholar

    [32] Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest Earth[J]. Science, 2005, 308(5723): 841-844. doi: 10.1126/science.1110873

    CrossRef Google Scholar

    [33] Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy & Petrology, 2006, 151(4): 413-433.

    Google Scholar

    [34] Ferry J M, Watson E B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers[J]. Contributions to Mineralogy & Petrology, 2007, 154(4): 429-437.

    Google Scholar

    [35] 高晓英, 郑永飞. 金红石Zr和锆石Ti含量地质温度计[J]. 岩石学报, 2011, 27(2): 417-431.

    Google Scholar

    [36] Hayden L A, Watson E B. Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon[J]. Earth and Planetary Science Letters, 2007, 258(3/4): 561-568.

    Google Scholar

    [37] King P L, White A J R, Chappell B W, et al. Characterization and Origin of Aluminous A-type Granites from the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrology, 1997, 38(3): 371-391. doi: 10.1093/petroj/38.3.371

    CrossRef Google Scholar

    [38] 刘昌实, 陈小明, 陈培荣, 等. A型岩套的分类、判别标志和成因[J]. 高校地质学报, 2003, 9(4): 573-591. doi: 10.3969/j.issn.1006-7493.2003.04.011

    CrossRef Google Scholar

    [39] 蔡杨, 吴维平, 马涛, 等. 安徽九华山柯村花岗斑岩锆石U-Pb年代学、地球化学特征及地质意义[J]. 华东地质, 2018, 39(3): 177-186.

    Google Scholar

    [40] 陈超, 滕学建, 潘志龙, 等. 内蒙古北山造山带中段石板井地区A型花岗岩锆石U-Pb年龄对北山洋闭合时间的限定[J]. 地质通报, 2020, 39(9): 1448-1460.

    Google Scholar

    [41] Schulz B, Klemd R, Bratz H. Host rock compositional controls on zircon trace element signatures in metabasites from the Austroalpine basement[J]. Geochimica et Cosmochimica Acta, 2006, 70(3): 697-710. doi: 10.1016/j.gca.2005.10.001

    CrossRef Google Scholar

    [42] Grimes C B, John B E, Kelemen P B, et al. 2007. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance[J]. Geology, 2007, 35(7): 643-646. doi: 10.1130/G23603A.1

    CrossRef Google Scholar

    Budd A R, Wyborn L A I, Bastrakova I V. The Metallogenic Potential of Australian Proterozoic Granites. 2001.

    Google Scholar

    Stewart K P, Foden J. Mesoproterozoic granites of South Australia. 2003.

    Google Scholar

    Coles B, Tassell S W, Street G J, et al. Progress reports, annual reports and final report to licence expiry/full surrender. 1991.

    Google Scholar

    Conor C H H. Moonta-Wallaroo region: an interpretation of the geology of the Maitland and Wallaroo 1: 100 000 sheet areas. 1995.

    Google Scholar

    Department of Primary industries and Resources SA. WHYALLA 1: 250, 000 geological map. 2006.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(3)

Article Metrics

Article views(1132) PDF downloads(9) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint