2021 Vol. 40, No. 12
Article Contents

DU Shihui, ZHANG Xiaoyu, ZHANG Guangcheng, CHANG Shuaipeng, GAO Xu, MENG Xianglian, MIAO Xiaoqi, HUANG Yong. Development characteristics of unloading zones of high and steep bank slope in the Yiong Tsangpo of Tibet and its engineering significance[J]. Geological Bulletin of China, 2021, 40(12): 2043-2051.
Citation: DU Shihui, ZHANG Xiaoyu, ZHANG Guangcheng, CHANG Shuaipeng, GAO Xu, MENG Xianglian, MIAO Xiaoqi, HUANG Yong. Development characteristics of unloading zones of high and steep bank slope in the Yiong Tsangpo of Tibet and its engineering significance[J]. Geological Bulletin of China, 2021, 40(12): 2043-2051.

Development characteristics of unloading zones of high and steep bank slope in the Yiong Tsangpo of Tibet and its engineering significance

More Information
  • Located at the top of the eastern Himalayan tectonic junction on the Qinghai-Tibet Plateau, the Yiong Tsangpo River basin is characterized by the alpine and gorge landform, complex structure, and frequent occurrence of geological disasters and instability of high and steep slopes. In order to determine the formation mechanism of geological disasters and the mode of slope instability in Yiong Tsangpo River basin, through the investigation of slope structural plane, directional inclined drilling, in-hole wave velocity test, adit exploration and seismic wave method, the development law of typical bank slope unloading zone in Yiong Tsangpo River basin was analyzed, and the bank slope unloading zones were divided by core integrity, fracture opening, rock mass wave velocity and other indexes. The results show that the unloading degree of rock mass weakens gradually from shallow to deep part of the slope, the higher the elevation is, the stronger the unloading development is, and the unloading degree of the west bank of the valley is obviously stronger than that of the east bank. It is concluded that the slope surface below 0 m to 20~30 m is a strong unloading zone, 20~30 m to 40~45 m is a weak unloading zone, and below 40~45 m is a non-unloading zone. Based on the stability analysis results of the bank slope, it is proposed that the slope is strengthened with anchor cables and bolts, and engineering prevention and control measures can be taken such as the clearing of dangerous rocks at the entrance, blocking and anchoring. The research results are of great significance for the guiding of planning and construction of highway, railways and hydropower, regional disaster prevention and mitigation.

  • 加载中
  • [1] 彭少文, 贺金明, 孙冠军, 等. 高陡边坡深部卸荷张拉裂缝的成因机制探讨[J]. 人民长江, 2015, 46(14): 32-35.

    Google Scholar

    [2] 黄润秋, 林峰, 陈德基, 等. 岩质高边坡卸荷带形成及其工程性状研究[J]. 工程地质学报, 2001, 9(3): 227-232. doi: 10.3969/j.issn.1004-9665.2001.03.001

    CrossRef Google Scholar

    [3] 王兰生, 李文纲, 孙云志. 岩体卸荷与水电工程[J]. 工程地质学报, 2008, 16(2): 145-153. doi: 10.3969/j.issn.1004-9665.2008.02.001

    CrossRef Google Scholar

    [4] 何书涛, 邓辉, 伍小军, 等. 班达水电站下坝址卸荷带特征研究[J]. 人民珠江, 2020, 41(6): 44-52. doi: 10.3969/j.issn.1001-9235.2020.06.008

    CrossRef Google Scholar

    [5] 姚鑫, 李凌婧, 张永双, 等. 青藏高原东缘区域地壳稳定性评价[J]. 地质通报, 2015, 34(1): 32-44. doi: 10.3969/j.issn.1671-2552.2015.01.003

    CrossRef Google Scholar

    [6] 周洪福, 冯治国, 石胜伟, 等. 川藏铁路某特大桥成都侧岸坡工程地质特征及稳定性评价[J]. 水文地质工程地质, 2021, 48(5): 112-119.

    Google Scholar

    [7] 游敏, 聂德新. 河谷斜坡卸荷综合分带研究[J]. 人民黄河, 2011, 33(1): 103-105. doi: 10.3969/j.issn.1000-1379.2011.01.044

    CrossRef Google Scholar

    [8] 郑达, 黄润秋. 西南水电工程坝址峨眉山玄武岩卸荷分带研究[J]. 成都理工大学学报(自然科学版), 2009, 36(2): 195-200. doi: 10.3969/j.issn.1671-9727.2009.02.015

    CrossRef Google Scholar

    [9] 李日运, 刘田珂. 岸坡应力场及卸荷带划分量化指标研究[J]. 华北水利水电大学学报(自然科学版), 2014, 35(2): 76-80. doi: 10.3969/j.issn.1002-5634.2014.02.018

    CrossRef Google Scholar

    [10] 郑达, 黄润秋. 高边坡岩体卸荷带划分的量化研究[J]. 水文地质工程地质, 2006, 33(5): 9-12. doi: 10.3969/j.issn.1000-3665.2006.05.002

    CrossRef Google Scholar

    [11] 郝文忠, 刘冲平, 王吉亮, 等. 乌东德水电站边坡岩体卸荷特征及稳定性评价[J]. 人民长江, 2015, 46(14): 12-15.

    Google Scholar

    [12] 朱容辰. 边坡岩体卸荷分带性研究[J]. 铁道勘察, 2010, 36(5): 46-50. doi: 10.3969/j.issn.1672-7479.2010.05.014

    CrossRef Google Scholar

    [13] 马宇, 任光明, 罗轶, 等. 岩质斜坡卸荷分带量化指标与应用研究[J]. 人民长江, 2013, 44(7): 33-35. doi: 10.3969/j.issn.1001-4179.2013.07.009

    CrossRef Google Scholar

    [14] 尹健民, 艾凯, 刘元坤, 等. 钻孔弹模法评价小湾水电站坝基岩体卸荷特征[J]. 长江科学院院报, 2006, 23(4): 44-46. doi: 10.3969/j.issn.1001-5485.2006.04.010

    CrossRef Google Scholar

    [15] 周黎明, 肖国强, 王法刚, 等. 边坡岩体风化卸荷特征研究及在姚家坪水利工程中的应用[J]. 长江科学院院报, 2014, 31(11): 81-86. doi: 10.3969/j.issn.1001-5485.2014.11.017

    CrossRef Google Scholar

    [16] 陈洪凯, 易丽云, 唐红梅. 开挖岩体边坡卸荷带宽度的计算方法[J]. 防灾减灾工程学报, 2011, 31(4): 358-363.

    Google Scholar

    [17] 黄勇, 孟祥连, 胡卸文, 等. 雅安至林芝交通廊道重大工程地质问题与对策研究[J]. 工程地质学报, 2021, 29(2): 307-325.

    Google Scholar

    [18] 许强, 王士天, 柴贺军, 等. 西藏易贡特大山体崩塌滑坡事件[J]. 爆破, 2007, 24(12): 41-46.

    Google Scholar

    [19] 李俊, 陈宁生, 邓明枫. 西藏林芝扎木弄沟泥石流规模变化趋势研究[J]. 人民长江, 2017, 48(23): 61-65.

    Google Scholar

    [20] 中华人民共和国国家标准: GB/T 50218-2014. 工程岩体分级标准[S]. 北京: 中国计划出版社, 2014.

    Google Scholar

    [21] 黄海宁, 巨能攀, 黄健, 等. 郑万高铁宜万段边坡危岩崩落破坏特征[J]. 水文地质工程地质, 2020, 47(3): 164-172.

    Google Scholar

    [22] 张加桂, 张永双, 曲永新. 滇藏铁路沿线滇藏交界段劈理化带成因探讨及工程效应分析[J]. 地球学报, 2009, 30(6): 885-892. doi: 10.3321/j.issn:1006-3021.2009.06.021

    CrossRef Google Scholar

    [23] 蔡荣坤, 戴自航, 徐根连, 等. 降雨对花岗岩风化层路堑边坡滑动模式影响——以福建云平高速云霄段为例[J]. 中国地质灾害与防治学报, 2021, 32(2): 27-35.

    Google Scholar

    [24] 陈笑楠, 张慧梅. 顺层边坡岩体结构的分岔灾变条件[J]. 中国地质灾害与防治学报, 2020, 31(1): 30-35.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(4)

Article Metrics

Article views(1102) PDF downloads(12) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint