2021 Vol. 40, No. 11
Article Contents

GAO Yongjuan, LIN Shiliang, QIN Yadong, REN Guangming, PANG Weihua, LOU Xiongying. U-Pb age and Hf isotope composition of detrital zircons from the Chengjiang Formation in Dongchuan area, Yunnan Province of the western Yangtze Block and its constraints on provenance and crustal evolution[J]. Geological Bulletin of China, 2021, 40(11): 1943-1956.
Citation: GAO Yongjuan, LIN Shiliang, QIN Yadong, REN Guangming, PANG Weihua, LOU Xiongying. U-Pb age and Hf isotope composition of detrital zircons from the Chengjiang Formation in Dongchuan area, Yunnan Province of the western Yangtze Block and its constraints on provenance and crustal evolution[J]. Geological Bulletin of China, 2021, 40(11): 1943-1956.

U-Pb age and Hf isotope composition of detrital zircons from the Chengjiang Formation in Dongchuan area, Yunnan Province of the western Yangtze Block and its constraints on provenance and crustal evolution

  • The Chengjiang Formation is one of the earliest stratigraphic units above the Jinning unconformity.Determining the sources is of great significance for the understanding of the early crustal evolution in the western Yangtze Block.U-Pb dating and Lu-Hf isotopic composition studies were carried out on the detrital zircons from the Lower Chengjiang Formation in the Dongchuan area of the western Yangtze Block.The U-Pb ages of the zircons are clustered at 780~900 Ma, ~1000 Ma and~1800 Ma respectively, and the weighted mean age of the youngest group is 801±5 Ma(MSWD=2.4, n=9), which is consistent with the volcanic age of the Lower Chengjiang Formation.Thus, it is further confirmed that the lower age of the Chengjiang Formation should be limited at~800 Ma.Combined with the U-Pb age and Hf isotopic composition, zircon morphology and paleogeography, it is believed that the detritus was largely sourced from the widely distributed Neoproterozoic magmatic rock in the western Yangtze Block, and a small part from the recycled materials of the Dongchuan Group.Regional comparison of the early Nanhua strata of the Yangtze Block indicates that the western and northern margins of the Yangtze Block show different crustal evolution history.The provenance differences of the Chengjiang Formation in different regions of the western margin of the Yangtze are closely related to regional tectonic activities.

  • 加载中
  • [1] Wang J, Li Z X. History of Neoproterozoic rift basins in South China: implications forRodinia break-up[J]. Precambrian Research, 2003, 122: 141-158. doi: 10.1016/S0301-9268(02)00209-7

    CrossRef Google Scholar

    [2] 江新胜, 王剑, 崔晓庄, 等. 滇中新元古代澄江组锆石SHRIMP U-Pb年代学研究及其地质意义[J]. 中国科学: 地球科学, 2012, 42(10): 1496-1507.

    Google Scholar

    [3] 崔晓庄, 江新胜, 王剑, 等. 扬子西缘澄江组底部玄武岩形成时代新证据及其地质意义[J]. 岩石矿物学杂志, 2015, 34(1): 1-13. doi: 10.3969/j.issn.1000-6524.2015.01.001

    CrossRef Google Scholar

    [4] 刘石磊, 崔晓庄, 汪长林, 等. 扬子西缘新元古代中期裂谷作用: 来自年代学与沉积学的新证据[J]. 地球科学, 2020, 45(8): 3082-3093.

    Google Scholar

    [5] 崔晓庄, 江新胜, 王剑, 等. 滇中新元古代澄江组层型剖面锆石U-Pb年代学及其地质意义[J]. 现代地质, 2013, 27(3): 547-556. doi: 10.3969/j.issn.1000-8527.2013.03.005

    CrossRef Google Scholar

    [6] 刘军平, 夏彩香, 孙柏东, 等. 滇中易门地区新元古代澄江组凝灰岩锆石U-Pb年龄及其地质意义[J]. 沉积与特提斯地质, 2019, 39(1): 14-21. doi: 10.3969/j.issn.1009-3850.2019.01.002

    CrossRef Google Scholar

    [7] 陆俊泽, 江新胜, 王剑, 等. 滇东北巧家地区新元古界澄江组SHRIMP锆石U-Pb年龄及其地质意义[J]. 矿物岩石, 2013, 33(2): 65-71.

    Google Scholar

    [8] Jing X, Yang Z, Evans D A D, et al. A pan-latitudinal Rodinia in the Tonian true polar wander frame[J]. Earth and Planetary Science Letters, 2020, 530. doi.org/10.1016/j.epsl.2019.115880. doi: 10.1016/j.epsl.2019.115880

    CrossRef Google Scholar

    [9] Wang L J, Yu J H, Griffin W L, et al. Early crustal evolution in the western Yangtze Block: Evidence from U-Pb and Lu-Hf isotopes on detrital zircons from sedimentary rocks[J]. Precambrian Research, 2012, 222/223: 368-385. doi: 10.1016/j.precamres.2011.08.001

    CrossRef Google Scholar

    [10] Zhao X F, Zhou M F, Li J W, et al. Late Paleoproterozoic to early MesoproterozoicDongchuan Group in Yunnan, SW China: Implications for tectonic evolution of the Yangtze Block[J]. Precambrian Research, 2010, 182(1/2): 57-69.

    Google Scholar

    [11] Chen W T, Zhou M, Zhao X. Late Paleoproterozoic sedimentary and mafic rocks in theHekou area, SW China: Implication for the reconstruction of the Yangtze Block in Columbia[J]. Precambrian Research, 2013, 231: 61-77. doi: 10.1016/j.precamres.2013.03.011

    CrossRef Google Scholar

    [12] 李怀坤, 张传林, 姚春彦, 等. 扬子西缘中元古代沉积地层锆石U-Pb年龄及Hf同位素组成[J]. 中国科学: 地球科学, 2013, 43(8): 1287-1298.

    Google Scholar

    [13] 杜利林, 郭敬辉, 耿元生, 等. 扬子西南缘盐边群时代及构造环境: 来自碎屑沉积岩的约束[J]. 岩石学报, 2013, 29(2): 641-672.

    Google Scholar

    [14] 杨红, 刘福来, 杜利林, 等. 扬子地块西南缘大红山群老厂河组变质火山岩的锆石U-Pb定年及其地质意义[J]. 岩石学报, 2012, 28(9): 2994-3014.

    Google Scholar

    [15] Wang L J, Griffin W L, Yu J H, et al. U-Pb and Lu-Hf isotopes in detrital zircon from Neoproterozoic sedimentary rocks in the northern Yangtze Block: Implications for Precambrian crustal evolution[J]. Gondwana Research, 2013, 23(4): 1261-1272. doi: 10.1016/j.gr.2012.04.013

    CrossRef Google Scholar

    [16] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    [17] Ludwig K R. Ageochronlogical toolkit for Microsoft excel[J]. Isoplot, 2003, 3: 1-70.

    Google Scholar

    [18] Hu Z C, Liu Y S, Gao S, et al. Improved in situHf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. J. Anal. Atom. Spectrom, 2012, 27(9): 1391-1399. doi: 10.1039/c2ja30078h

    CrossRef Google Scholar

    [19] 卓皆文, 江新胜, 王剑, 等. 川西新元古界开建桥组底部沉凝灰岩锆石SHRIMP U-Pb年龄及其地质意义[J]. 矿物岩石, 2015, 35(1): 91-99.

    Google Scholar

    [20] Li X H, Li Z X, W Z H, et al. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: Implications for the initial rifting of Rodinia[J]. Precambrian Research, 2002, 113: 135-154. doi: 10.1016/S0301-9268(01)00207-8

    CrossRef Google Scholar

    [21] 胡世玲, 刘鸿允, 劳秋元. 震旦纪地质年代学新研究[J]. 地质科学, 1991, (4): 325-336.

    Google Scholar

    [22] 杜秋定, 王剑, 汪正江, 等. 扬子地块新元古代裂谷盆地莲沱组沉积分异及其物源分析[J]. 地球科学, 2021, 46(7): 2529-2543.

    Google Scholar

    [23] 徐琼, 江拓, 侯林春, 等. 扬子陆块三峡地区莲沱组砂岩中碎屑U-Pb年龄、Hf同位素组成及其地质意义[J]. 地球科学, 2021, 46(4): 1217-1230.

    Google Scholar

    [24] 王剑, 李献华, Duan Z T, 等. 沧水铺火山岩锆石SHRIMP U-Pb年龄及"南华系"底界新证据[J]. 科学通报, 2003, 48(16): 1726-1731. doi: 10.3321/j.issn:0023-074X.2003.16.003

    CrossRef Google Scholar

    [25] Liu Y, Yang K, Polat A, et al. Reconstruction of the Cryogenian palaeogeography in the Yangtze Domain: constraints from detrital age patterns[J]. Geological Magazine, 2019, 156(7): 1247-1264. doi: 10.1017/S0016756818000535

    CrossRef Google Scholar

    [26] 高林志, 陈建书, 戴传固, 等. 黔东地区梵净山群与下江群凝灰岩SHRIMP锆石U-Pb年龄[J]. 地质通报, 2014, 33(7): 949-959. doi: 10.3969/j.issn.1671-2552.2014.07.002

    CrossRef Google Scholar

    [27] 汪正江, 王剑, 杜秋定, 等. 扬子克拉通内存在太古代成熟陆壳: 来自岩石学、同位素年代学和地球化学证据[J]. 科学通报, 2013, 58(17): 1651-1660.

    Google Scholar

    [28] Lan Z, Li X, Zhu M, et al. A rapid and synchronous initiation of the wide spreadCryogenian glaciations[J]. Precambrian Research, 2014, 255: 401-411. doi: 10.1016/j.precamres.2014.10.015

    CrossRef Google Scholar

    [29] 高林志, 陆济璞, 丁孝忠, 等. 桂北地区新元古代地层凝灰岩锆石U-Pb年龄及地质意义[J]. 中国地质, 2013, 40(5): 1443-1452. doi: 10.3969/j.issn.1000-3657.2013.05.009

    CrossRef Google Scholar

    [30] 李献华, 李武显, 何斌. 华南陆块的形成与Rodinia超大陆聚合-裂解——观察、解释与检验[J]. 矿物岩石地球化学通报, 2012, (6): 543-559. doi: 10.3969/j.issn.1007-2802.2012.06.002

    CrossRef Google Scholar

    [31] Zhou M F, Yan D P, Kennedy A K, et al. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 2002, 196: 51-67. doi: 10.1016/S0012-821X(01)00595-7

    CrossRef Google Scholar

    [32] 李献华, 李正祥, 周汉文, 等. 川西南关刀山岩体的SHRIMP锆石U-Pb年龄、元素和Nd同位素地球化学——岩石成因与构造意义[J]. 中国科学(D辑), 2003, (S2): 60-68.

    Google Scholar

    [33] Sun W, Zhou M, Yan D, et al. Provenance and tectonic setting of the NeoproterozoicYanbian Group, western Yangtze Block(SW China)[J]. Precambrian Research, 2008, 167: 213-236. doi: 10.1016/j.precamres.2008.08.001

    CrossRef Google Scholar

    [34] Du L L, Guo J H, Nutman A P, et al. Implications for Rodinia reconstructions for the initiation of Neoproterozoic subduction at ~860Ma on the western margin of the Yangtze Block: Evidence from the Guandaoshan Pluton[J]. Lithos, 2014, 196/197: 67-82. doi: 10.1016/j.lithos.2014.03.002

    CrossRef Google Scholar

    [35] 郭春丽, 王登红, 陈毓川, 等. 川西新元古代花岗质杂岩体的锆石SHRIMP U-Pb年龄、元素和Nd-Sr同位素地球化学研究: 岩石成因与构造意义[J]. 岩石学报, 2007, 10(10): 2457-2470. doi: 10.3969/j.issn.1000-0569.2007.10.014

    CrossRef Google Scholar

    [36] 耿元生, 杨崇辉, 王新社, 等. 扬子地台西缘结晶基底的时代[J]. 高校地质学报, 2007, 13(3): 429-441. doi: 10.3969/j.issn.1006-7493.2007.03.012

    CrossRef Google Scholar

    [37] Meng E, Liu F, Du L, et al. Petrogenesis and tectonic significance of the Baoxing granitic and mafic intrusions, southwestern China: Evidence from zircon U-Pb dating and Lu-Hf isotopes, and whole-rock geochemistry[J]. Gondwana Research, 2015, 28(2): 800-815. doi: 10.1016/j.gr.2014.07.003

    CrossRef Google Scholar

    [38] Zhou M F, Ma Y X, Yan D P, et al. TheYanbian Terrane(Southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze Block[J]. Precambrian Research, 2006, 144(1/2): 19-38.

    Google Scholar

    [39] Wu T, Zhou J, Wang X, et al. Identification of ca. 850 Ma high-temperature stronglyperaluminous granitoids in southeastern Guizhou Province, South China: A result of early extension along the southern margin of the Yangtze Block[J]. Precambrian Research, 2018, 308: 18-34. doi: 10.1016/j.precamres.2018.02.007

    CrossRef Google Scholar

    [40] 卓皆文, 江新胜, 王剑, 等. 华南扬子古大陆西缘新元古代康滇裂谷盆地的开启时间与充填样式[J]. 中国科学: 地球科学, 2013(12): 1952-1963.

    Google Scholar

    [41] 任光明, 庞维华, 孙志明, 等. 四川喜德地区九盘营组变英安岩锆石U-Pb年龄: 兼论登相营群新认识[J]. 矿物岩石, 2016, 36(3): 79-86.

    Google Scholar

    [42] Wang W, Zhou M. Sedimentary records of the Yangtze Block(South China) and their correlation with equivalent Neoproterozoic sequences on adjacent continents[J]. Sedimentary Geology, 2012, 265/266: 126-142.

    Google Scholar

    [43] 杨崇辉, 耿元生, 杜利林, 等. 扬子地块西缘Grenville期花岗岩的厘定及其地质意义[J]. 中国地质, 2009, 36(3): 647-657. doi: 10.3969/j.issn.1000-3657.2009.03.011

    CrossRef Google Scholar

    [44] Li Z X, Li X H, Zhou H W, et al. Grenvillian continental collision in South China: new SHRIMP U-Pb zircon results and implications for the configuration of Rodinia[J]. Geology, 2002, 30(2): 163-166. doi: 10.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO;2

    CrossRef Google Scholar

    [45] Wang Y, Zhu W, Huang H, et al. Ca. 1.04 Ga hot Grenville granites in the western Yangtze Block, southwest China[J]. Precambrian Research, 2019, 328: 217-234. doi: 10.1016/j.precamres.2019.04.024

    CrossRef Google Scholar

    [46] 王生伟, 廖震文, 孙晓明, 等. 会东菜园子花岗岩的年龄、地球化学——扬子地台西缘格林威尔造山运动的机制探讨[J]. 地质学报, 2013, 87(1): 55-70. doi: 10.3969/j.issn.0001-5717.2013.01.006

    CrossRef Google Scholar

    [47] Zhu W, Zhong H, Li Z, et al. SIMS zircon U-Pb ages, geochemistry and Nd-Hf isotopes of ca. 1.0Ga mafic dykes and volcanic rocks in the Huili area, SW China: Origin and tectonic significance[J]. Precambrian Research, 2016, 273: 67-89. doi: 10.1016/j.precamres.2015.12.011

    CrossRef Google Scholar

    [48] Chen W T, Sun W H, Wang W, et al. "Grenvillian" intra-plate mafic magmatism in the southwestern Yangtze Block, SW China[J]. Precambrian Research, 2014, 242: 138-153. doi: 10.1016/j.precamres.2013.12.019

    CrossRef Google Scholar

    [49] 李怀坤, 张传林, 相振群, 等. 扬子克拉通神农架群锆石和斜锆石U-Pb年代学及其构造意义[J]. 岩石学报, 2013, 29(2): 673-697.

    Google Scholar

    [50] 张传恒, 高林志, 武振杰, 等. 滇中昆阳群凝灰岩锆石SHRIMP U-Pb年龄: 华南格林威尔期造山的证据[J]. 科学通报, 2007, 52(7): 818-824. doi: 10.3321/j.issn:0023-074X.2007.07.016

    CrossRef Google Scholar

    [51] 尹福光, 孙志明, 白建科. 东川、滇中地区中元古代地层格架[J]. 地层学杂志, 2011, 35(1): 49-54.

    Google Scholar

    [52] Greentree M R, Li Z X, Li X H, et al. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China[J]. Precambrian Research, 2006, 151: 79-100. doi: 10.1016/j.precamres.2006.08.002

    CrossRef Google Scholar

    [53] Song G, Wang X, Shi X, et al. New U-Pb age constraints on the upper Banxi Group and synchrony of the Sturtian glaciation in South China[J]. Geoscience Frontiers, 2017, 8(5): 1161-1173. doi: 10.1016/j.gsf.2016.11.012

    CrossRef Google Scholar

    [54] Wang L, Griffin W L, Yu J, et al. Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks[J]. Precambrian Research, 2010, 177: 131-144. doi: 10.1016/j.precamres.2009.11.008

    CrossRef Google Scholar

    [55] 魏亚楠, 江新胜, 崔晓庄, 等. 黔东南新元古代清水江组碎屑锆石U-Pb年代学研究及其地质意义[J]. 矿物岩石, 2015, 35(3): 61-71.

    Google Scholar

    [56] Wang X, Li X, Li Z, et al. Episodic Precambrian crust growth: Evidence from U-Pb ages and Hf-O isotopes of zircon in the Nanhua Basin, central South China[J]. Precambrian Research, 2012, 222/223: 386-403. doi: 10.1016/j.precamres.2011.06.001

    CrossRef Google Scholar

    [57] 宋芳, 牛志军, 何垚砚, 等. 中扬子地区南华纪早期碎屑锆石U-Pb年龄及其对物源特征和古地理格局的约束[J]. 地质学报, 2016, 90(10): 2661-2680. doi: 10.3969/j.issn.0001-5717.2016.10.009

    CrossRef Google Scholar

    [58] Zhu G, Yu J, Zhou X, et al. The western boundary between the Yangtze andCathaysia blocks, new constraints from the Pingbian Group sediments, southwest South China Block[J]. Precambrian Research, 2019, 331: 105350. doi: 10.1016/j.precamres.2019.105350

    CrossRef Google Scholar

    [59] 彭敏, 吴元保, 汪晶, 等. 扬子崆岭高级变质地体古元古代基性岩脉的发现及其意义[J]. 科学通报, 2009, (5): 641-647.

    Google Scholar

    [60] 熊庆, 郑建平, 余淳梅, 等. 宜昌圈椅埫A型花岗岩锆石U-Pb年龄和Hf同位素与扬子大陆古元古代克拉通化作用[J]. 科学通报, 2009, 53(22): 2782-2792.

    Google Scholar

    [61] 刘文中, 徐士进, 王汝成, 等. 攀西麻粒岩锆石U-Pb年代学: 新元古代扬子陆块西缘地质演化新证据[J]. 地质论评, 2005, 51(4): 470-476. doi: 10.3321/j.issn:0371-5736.2005.04.016

    CrossRef Google Scholar

    [62] 王冬兵, 孙志明, 尹福光, 等. 扬子地块西缘河口群的时代: 来自火山岩锆石LA-ICP-MS U-Pb年龄的证据[J]. 地层学杂志, 2012, 36(3): 630-635.

    Google Scholar

    [63] 任光明, 庞维华, 孙志明, 等. 扬子西缘会理地区通安组角闪岩锆石U-Pb定年及其地质意义[J]. 矿物岩石, 2014, 34(2): 33-39.

    Google Scholar

    [64] Greentree M R, Li Z X. The oldest known rocks in south-western China: SHRIMP U-Pb magmatic crystallisation age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group[J]. Journal of Asian Earth Sciences, 2008, 33(5/6): 289-302.

    Google Scholar

    [65] 关俊雷, 郑来林, 刘建辉, 等. 四川省会理县河口地区辉绿岩体的锆石SHRIMP U-Pb年龄及其地质意义[J]. 地质学报, 2011, 85(4): 482-490.

    Google Scholar

    [66] 王冬兵, 尹福光, 孙志明, 等. 扬子陆块西缘古元古代基性侵入岩LA-ICP-MS锆石U-Pb年龄和Hf同位素及其地质意义[J]. 地质通报, 2013, 32(4): 617-630. doi: 10.3969/j.issn.1671-2552.2013.04.010

    CrossRef Google Scholar

    [67] Sun W H, Zhou M F, Gao J F, et al. Detrital zircon U-Pb geochronological and Lu-Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China[J]. Precambrian Research, 2009, 172(1/2): 99-126.

    Google Scholar

    [68] Zheng J P, Griffin W L, O' Reilly S Y. Widespread Archean basement beneath the Yangtze Craton[J]. Geology, 2006, 34(6): 417-420. doi: 10.1130/G22282.1

    CrossRef Google Scholar

    [69] Han P, Guo J, Chen K, et al. Widespread Neoarchean(~2.7-2.6Ga) magmatism of the Yangtze craton, South China, as revealed by modern river detrital zircons[J]. Gondwana Research, 2017, 42: 1-12. doi: 10.1016/j.gr.2016.09.006

    CrossRef Google Scholar

    [70] Wang Z J, Wang J, Du Q D, et al. The evolution of the Central Yangtze Block during early Neoarchean time: Evidence from geochronology and geochemistry[J]. Journal of Asian Earth Sciences, 2013, 77(21): 31-44.

    Google Scholar

    [71] Cui X, Wang J, Sun Z, et al. Early Paleoproterozoic(ca. 2.36 Ga) post-collisional granitoids in Yunnan, SW China: Implications for linkage between Yangtze and Laurentia in the Columbia supercontinent[J]. Journal of Asian Earth Sciences, 2019, 169: 308-322. doi: 10.1016/j.jseaes.2018.10.026

    CrossRef Google Scholar

    [72] 宋高源. 扬子地台东南缘新元古代地层碎屑锆石年龄及其意义[D]. 中国地质大学(北京) 博士学位论文, 2017.

    Google Scholar

    [73] Peng S, Kusky T M, Jiang X F, et al. Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze craton: Implications for South China's amalgamation history with the Rodinian supercontinent[J]. Gondwana Research, 2012, 21: 577-594. doi: 10.1016/j.gr.2011.07.010

    CrossRef Google Scholar

    [74] Shi Y R, Liu D Y, Zhang Z Q, et al. SHRIMP zircon U-Pb dating of Gabbro and Granite from the Huashan Ophiolite, Qinling Orogenic Belt, China: Neoproterozoic Suture on the Northern Margin of the Yangtze Craton[J]. Acta Geologica Sinica, 2007, 81: 239-243. doi: 10.1111/j.1755-6724.2007.tb00947.x

    CrossRef Google Scholar

    [75] 魏亚楠. 扬子陆块南部新元古代碎屑锆石U_Pb年龄谱及其地质意义[D]. 中国地质大学(武汉) 硕士学位论文, 2016.

    Google Scholar

    [76] 张昆昆. 滇东南建水地区新元古代澄江组碎屑锆石年代学及其地质意义[D]. 中国地质大学(武汉) 硕士学位论文, 2016.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(847) PDF downloads(12) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint