Citation: | LIU Han, WANG Baodi, CHEN Li, WANG Liquan, ZHANG Yujie, LI Jun, GOU Zhengbin, ZHANG Shizhen. Xialu N-MORB gabbros and diabases in the Xigaze ophiolite: Record of subduction initiation of the Yarlung Zangbo Tethyan Ocean at Early Cretaceous[J]. Geological Bulletin of China, 2021, 40(11): 1836-1851. |
The 130~120 Ma ophiolite is the most widely distributed in the Yarlung Zangbo suture zone, however, its formation environment remains controversial.Based on zircon U-Pb ages, whole-rock geochemical date of Xialu gabbros and diabases, and a large number of data of Xigaze ophiolite, the tectonic environment and dynamic significance of Early Cretaceous ophiolite were discussed.LA-ICP-MS zircon U-Pb dating of the Xialu gabbro yields weighted mean age of 123.8 ± 1.1 Ma(MSWD = 0.97), indicating one of the 130~120 Ma Xigaze ophiolite relics.Some gabbro samples are characterized by high Cao, low SiO2 and very low K2O and Na2O contents, which can be attributed to a rodingitization process, whereas diabases suffer from minimal affection of fluid.Xialu gabbros and diabases show N-MORB type characteristics and more depleted in light rare earth elements than normal N-MORB, suggesting high degree partial melting of a depleted mantle of spinel lherzolite source.The N-MORB basic rocks of the 130~120 Ma ophiolite in Xigaze were generated from a mantle source with inhomogeneous mixture of subduction components, and characterized by the transition from MORB to VAB, with a minimal adding of continental crust, which suggest that the Xigaze ophiolite was formed in an intra-oceanic arc system.Combined with regional geology, it is suggested that the 130~120 Ma ophiolite in Xigaze is similar to the IBM fore-arc ophiolite in development time, lithology and geochemistry, representing a subduction initiation in the Yarlung Zangbo Tethys Ocean.
[1] | Dai J G, Wang C S, Hébert R, et al. Late Devonian OIB alkaline gabbro in the Yarlung Zangbo Suture Zone: Remnants of the Paleo-Tethys?[J]. Gondwana Research, 2011, 19(1) : 232-243. doi: 10.1016/j.gr.2010.05.015 |
[2] | 郎兴海, 唐菊兴, 邓煜霖, 等. 西藏拉萨地块南缘雄村矿集区首次发现早石炭世辉长岩: 古特提斯洋的残留?[J]. 地球学报, 2017, 38(5) : 745-753. |
[3] | Xia B, Chen G W, Wang R, et al. Seamount volcanism associated with the Xigaze ophiolite, Southern Tibet[J]. Journal of Asian Earth Sciences, 2008, 32: 396-405. doi: 10.1016/j.jseaes.2007.11.008 |
[4] | 李文霞, 赵志丹, 朱弟成, 等. 西藏雅鲁藏布蛇绿岩形成构造环境的地球化学鉴别[J]. 岩石学报, 2012, 28(5) : 1663-1673. |
[5] | Dai J G, Wang C S, Li Y L. Relicts of the Early Cretaceous seamounts in the central-western Yarlung Zangbo Suture Zone, southern Tibet[J]. Journal of Asian Earth Sciences, 2012, 53: 25-37. doi: 10.1016/j.jseaes.2011.12.024 |
[6] | Reagan M K, Ishizuka O, Stern R J, et al. Fore-arc basalts and subduction initiation in the Izu-Bonin -Mariana system[J]. Geochemistry, Geophysics, Geosystems, 2010, 11, Q03X12. doi:10.1029/2009GC002871. |
[7] | Ishizuka O, Tani K, Reagan M K, et al. The timescales of subduction initiation and subsequent evolution of an oceanic island arc[J]. Earth and Planetary Science Letters, 2011, 306(3/4) : 229-240. |
[8] | 陈根文, 夏斌, 钟志洪, 等. 西藏得几蛇绿岩体中玻安岩的地球化学特征及其地质意义[J]. 矿物学报, 2003, 23(1) : 91-96. doi: 10.3321/j.issn:1000-4734.2003.01.015 |
[9] | 郑来林, 耿全如, 欧春生, 等. 藏东南迦巴瓦地区雅鲁藏布江蛇绿混杂岩中玻安岩的地球化学特征和地质意义[J]. 地质通报, 2003, 22(11/12) : 8-11. |
[10] | Dai J G, Wang C S, Polat A, et al. Rapid forearc preading between 130 and 120 Ma: evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet[J]. Lithos, 2013, 172/173: 1-16. |
[11] | Liu W L, Zhong Y, Sun Z L, et al. The Late Jurassic Zedong ophiolite: A remnant of subduction initiation within the Yarlung Zangbo Suture Zone(southern Tibet) and its tectonic implications[J]. Gondwana Research, 2020, 78: 172-188. doi: 10.1016/j.gr.2019.09.002 |
[12] | 吴浩若. 西藏南部下鲁硅岩晚侏罗世罩笼虫(放射虫) 新材料[J]. 现代地质, 2000, 14(3) : 301-306. doi: 10.3969/j.issn.1000-8527.2000.03.011 |
[13] | Guilmette C, Hébert R, Wang C S, et al. Geochemistry and geochronology of the metamorphic sole underlying the Xigaze Ophiolite, Yarlung Zangbo Suture Zone, South Tibet[J]. Lithos, 2009, 112: 149-162. doi: 10.1016/j.lithos.2009.05.027 |
[14] | Hébert R, Bezard R, Guilmette C, et al. The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys[J]. Gondwana Research, 2012, 22(2) : 377-397. doi: 10.1016/j.gr.2011.10.013 |
[15] | Aitchison J C, Zhu B D, Davis A M, et al. Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung. Zangbo suture(southern Tibet) [J]. Earth and Planetary Science Letters, 2000, (183) : 231-244. |
[16] | Dupuis C, Hébert R, Dubois-Côté V, et al. The Yarlung Zangbo Suture Zone ophiolitic melange(southern Tibet) [J]. Journal of Asian Earth Sciences, 2005, 25: 937-960. doi: 10.1016/j.jseaes.2004.09.004 |
[17] | Bezard R, Hébert R, Wang C S, et al. Petrology and geochemistry of the Xiugugabu ophiolitic massif, western Yarlung Zangbo suture zone, Tibet[J]. Lithos, 2011, 125: 347-367. doi: 10.1016/j.lithos.2011.02.019 |
[18] | Xia B, Yu H J, Chen G W, et al. Geochemistry and tectonic environment of the Dagzhuka ophiolite in the Yarlung-Zangbo suture zone, Tibet[J]. Geochemical Journal, 2003, 37: 311-324. doi: 10.2343/geochemj.37.311 |
[19] | Zhang S Q, Mahoney J J, Mo X X, et al. Evidence for a Widespread Tethyan Upper Mantle with Indian-Ocean-Type Isotopic Characteristics[J]. Journal of Petrology, 2005, 46(4) : 829-858. doi: 10.1093/petrology/egi002 |
[20] | Xiong Q, Griffin W L, Zheng J P, et al. Southward trench migration at ~130-120 Ma caused accretion of the Neo-Tethyan forearc lithosphere in Tibetan ophiolites[J]. Earth and Planetary Science Letters, 2016, 438: 57-65. doi: 10.1016/j.epsl.2016.01.014 |
[21] | 吴福元, 刘传周, 张亮亮, 等. 雅鲁藏布蛇绿岩——事实与臆想[J]. 岩石学报, 2014, 30(2) : 293-325. |
[22] | Liu T, Wu F Y, Zhang L L, et al. Zircon U-Pb geochronological constraints on rapid exhumation of the mantle peridotite of the Xigaze ophiolite, southern Tibet[J]. Chemical Geology, 2016, 443: 67-86. doi: 10.1016/j.chemgeo.2016.09.015 |
[23] | 刘飞, 连东洋, 牛晓露, 等. 雅鲁藏布江缝合带西段东波MORB型均质辉长岩的大洋核杂岩成因[J]. 地球科学, 2018, 43(4) : 952-974. |
[24] | 潘桂棠, 王立全, 李兴振, 等. 青藏高原区域构造格局及其多岛弧盆系的空间配置[J]. 沉积与特提斯地质, 2001, 21(3) : 1-26. doi: 10.3969/j.issn.1009-3850.2001.03.001 |
[25] | 王立全, 朱同兴. 青藏高原及邻区地质图说明书(1: 1500000) [M]. 北京: 地质出版社, 2013: 1-319. |
[26] | 潘桂棠, 陈智梁, 李兴振. 东特提斯地质构造形成演化[M]. 北京: 地质出版社, 1997: 1-100. |
[27] | 吴浩若. 西藏南部和地中海西部白垩纪中期放射虫化石的对比[J]. 微体古生物学报, 2010, 27(4) : 299-304. |
[28] | Ziabrev S V, Aitchison J C, Abrajevitch A V, et al. Precise radiolarian age constraints on the timing of ophiolite generation and sedimentation in the Dazhuqu terrane, Yarlung-Tsangpo suture zone, Tibet[J]. Journal of the Geological Society, 2003, 160: 591-599. doi: 10.1144/0016-764902-107 |
[29] | 朱杰, 杜远生, 刘早学, 等. 西藏雅鲁藏布江缝合带中段中生代放射虫硅质岩成因及其大地构造意义[J]. 中国科学(D辑), 2005, 35(12) : 1131-1139. |
[30] | Göpel C, Allègre C J, Xu R H. Lead isotopic study of the Xigaze ophiolite(Tibet) the problem of the relationship between magmatites(gabbros, dolerites, lavas) and tectonites(harzburgites) [J]. Earth and Planetary Science Letters, 1984, 69: 301-310. doi: 10.1016/0012-821X(84)90189-4 |
[31] | Malpas J, Zhou M F, Robinson P T, et al. Geochemical and geochronological constraints on the origin and emplacement of the Yarlung Zangbo ophiolites, Southern Tibet[J]. Geological Society, 2003, 218: 191-206. doi: 10.1144/GSL.SP.2003.218.01.11 |
[32] | 王冉, 夏斌, 周庆国, 等. 西藏吉定蛇绿岩中辉长岩SHRIMP锆石U-Pb年龄[J]. 科学通报, 2006, 51(1) : 114-117. doi: 10.3321/j.issn:0023-074X.2006.01.021 |
[33] | Huot F, Hébert R, Varfalvy V, et al. The Beimarang mélange(southern Tibet) brings additional constraints in assessing the origin, metamorphic evolution and obduction processes of the Yarlung Zangbo ophiolite[J]. Journal of Asian Earth Sciences, 2002, 21: 307-322. doi: 10.1016/S1367-9120(02)00053-6 |
[34] | 牛晓露, 赵志丹, Depaolo D J, 等. 西藏日喀则地区德村-昂仁蛇绿岩内基性岩的元素与Sr-Nd-Pb同位素地球化学及其揭示的特提斯地幔域特征[J]. 岩石学报, 2006, 22(12) : 2875-2888. |
[35] | 朱弟成, 莫宣学, 王立全, 等. 新特提斯演化的热点与洋脊相互作用: 西藏南部晚侏罗世—早白垩世岩浆作用推论[J]. 岩石学报, 2008, 24(2) : 225-237. |
[36] | Huang F, Xu J F, Zeng Y C, et al. Slab Breakoff of the Neo-Tethys Ocean in the Lhasa Terrane Inferred From Contemporaneous Melting of the Mantle and Crust[J]. Geochemistry Geophysics Geosystems, 2017, 18(11) : 4074-4095. doi: 10.1002/2017GC007039 |
[37] | Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2) : 34-43. |
[38] | Ludwig K R. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, California, Berkeley, 2003: 1-77. |
[39] | 刘颖, 刘海臣, 李献华. 用ICP-MS准确测定岩石样品中的40余种微量元素[J]. 地球化学, 1996, 25(6) : 552-558. doi: 10.3321/j.issn:0379-1726.1996.06.004 |
[40] | Reagan M K, McClelland W C, Girard G, et al. The geology of the southern Mariana fore-arc crust: Implications for the scale of Eocene volcanism in the western Pacific[J]. Earth and Planetary Science Letters, 2013, 380: 41-51. doi: 10.1016/j.epsl.2013.08.013 |
[41] | Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society Special Publication, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 |
[42] | Sylvester P J, Campbell I H, Bowyer D A. Niobium/Uranium Evidence for Early Formation of the Continental Crust[J]. Science, 1997, 275 : 521-523. doi: 10.1126/science.275.5299.521 |
[43] | Pthman B D, White W M, Patchett J. The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling[J]. Earth Planetary Science Letters, 1989, 94: 1-21. doi: 10.1016/0012-821X(89)90079-4 |
[44] | 李曙光. 蛇绿岩生成构造环境的Ba-Th-Nb-La判别图[J]. 岩石学报, 1993, 9(2) : 146-157. doi: 10.3321/j.issn:1000-0569.1993.02.005 |
[45] | Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145: 325-394. doi: 10.1016/S0009-2541(97)00150-2 |
[46] | Niu Y L. The Meaning of Global Ocean Ridge Basalt Major Element Compositions[J]. Journal of Petrology, 2016, 57(11/12) : 2081-2104. |
[47] | 李昌年. 火成岩微量元素地球化学[M]. 武汉: 中国地质大学出版社, 1992: 1-195. |
[48] | Roex A P, Dick H J B, Erlank A J, et al. Geochemistry, mineralogy and petrogenesis of lavas erupted along the southwest Indian Ridge between the Bouver triple junction and degree east[J]. Journal of Petrology, 1983, 24(3) : 267-318. doi: 10.1093/petrology/24.3.267 |
[49] | 赵佳楠, 许志琴, 梁凤华, 等. 西藏日喀则地区白朗蛇绿岩中石榴辉石岩的岩石地球化学、年代学及其构造意义[J]. 岩石学报, 2015, 31(12) : 3687-3700. |
[50] | Saccani E. A new method of discriminating different types of post-Archean Ophiolitic Basalts and Their Tectonic Signficance Using Th-Nb and Ce-Dy-Yb Systematics[J]. Geoscience Fronticrs, 2015, 6(4) : 481-501. doi: 10.1016/j.gsf.2014.03.006 |
[51] | 肖龙, 徐义刚, 梅厚钧, 等. 云南宾川地区峨眉山玄武岩地球化学特征: 岩石类型及随时间演化规律[J]. 地质科学, 2003, 38(4) : 478-494. doi: 10.3321/j.issn:0563-5020.2003.04.007 |
[52] | Aldanmaz E, Pearce J A, Thirlwall M F, et al. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research, 2000, 102: 67-95. doi: 10.1016/S0377-0273(00)00182-7 |
[53] | 吴浩若. 西藏南部白垩纪深海沉积地层——冲堆组及其地质意义[J]. 地质科学, 1984, 1: 26-33. |
[54] | Matsuoka A, Yang Q, Kobayashi K, et al. JurassiceCretaceous radiolarian biostratigraphy and sedimentary environments of the Ceno- Tethys: records from the Xialu Chert in the Yarlung- Zangbo Suture Zone, southern Tibet[J]. Journal of Asian Earth Sciences, 2002, 20(3) : 277-287. doi: 10.1016/S1367-9120(01)00044-X |
[55] | 王玉净, 舒良树. 中国蛇绿岩带形成时代研究中的两个误区[J]. 古生物学报, 2001, 40(4) : 529-532. doi: 10.3969/j.issn.0001-6616.2001.04.014 |
[56] | Ngai Chan G H, Aitchison J C, Crowley Q G, et al. Michael P. Searle A, U-Pb zircon ages for Yarlung Tsangpo suture zone ophiolites, southwestern Tibet and their tectonic implications[J]. Gondwana Research, 2015, 27: 719-732. doi: 10.1016/j.gr.2013.06.016 |
[57] | 李建峰, 夏斌, 刘立文, 等. 西藏群让蛇绿岩辉长岩SHRIMP锆石U-Pb年龄及地质意义[J]. 大地构造与成矿学, 2009.33(2) : 294-298. doi: 10.3969/j.issn.1001-1552.2009.02.013 |
[58] | Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y, and Nb Variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69: 33-37. doi: 10.1007/BF00375192 |
[59] | Shervais J W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J]. Earth and Planetary Science Letter, 1982, 59: 110-118. |
[60] | Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province[J]. Earth and Planetary Science Letters, 1980, 50(1) : 11-30. doi: 10.1016/0012-821X(80)90116-8 |
[61] | Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986, 56: 207-218. doi: 10.1016/0009-2541(86)90004-5 |
[62] | McKenzie D, O'nions R K. Partial melt distributions from inversion of rare earth element concentrations[J]. Journal of Petrology, 1991, 32(5) : 1021-1091. doi: 10.1093/petrology/32.5.1021 |
[63] | Dubois-Côté V, HéBert R, Dupuis C, et al. Petrological and geochemical evidence for the origin of the Yarlung Zangbo ophiolites, southern Tibet[J]. Chemical Geology, 2005, 214: 265-286. doi: 10.1016/j.chemgeo.2004.10.004 |
[64] | Condie K C. Mafic crustal xenoliths and the origin of the lower continental crust[J]. Lithos, 1999, 46: 95-101. doi: 10.1016/S0024-4937(98)00056-5 |
[65] | Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4) : 956-983. doi: 10.1093/petrology/25.4.956 |
[66] | Pearce J A, Stern R J, Bloomer S H, et al. Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(7) : p. Q07006. doi:10.1029/2004GC000895. |
[67] | El-Rahman Y A, Polat A, Dilek Y, et al. Geochemistry and tectonic evolution of the neoproterozoic wadi ghadir ophiolite, eastern desert, Egypt[J]. Lithos, 2009, 113(1/2), 158-178. |
[68] | Hawkesworth C J, Gallagher K, Hergt J M, et al. Mantle and slab contributions in arc magmas[J]. Annual Review of Earth and Planetary Sciences, 1993, 21: 175-204. doi: 10.1146/annurev.ea.21.050193.001135 |
[69] | 李源, 杨经绥, 裴先治, 等. 秦岭造山带早古生代蛇绿岩的多阶段演化: 从岛弧到弧间盆地[J]. 岩石学报, 2012, 28(6) : 1896-1914. |
[70] | 夏斌, 王冉, 陈根文. 西藏仁布蛇绿岩壳层熔岩的岩石地球化学及成因[J]. 高校地质学报, 2003, 9(4) : 638-647. doi: 10.3969/j.issn.1006-7493.2003.04.015 |
[71] | Chen G W, Xia B. Platinum-group elemental geochemistry of mafic and ultramafic rocks from the Xigaze ophiolite, southern Tibet[J]. Journal of Asian Earth Sciences, 2008, 32: 406-422. doi: 10.1016/j.jseaes.2007.11.009 |
[72] | Whattam S A, Stern R J. The 'subduction initiation rule': a key for linking ophiolites, intra-oceanic forearcs, and subduction initiation[J]. Contributions to Mineralogy & Petrology, 2011, 162: 1031-1045. |
[73] | Guilmette C, Hébert R, Dostal J, et al. Discovery of a dismembered metamorphic sole in the Saga ophiolitic mélange, South Tibet: Assessing an Early Cretaceous disruption of the Neo-Tethyan supra-subduction zone and consequences on basin closing[J]. Gondwana Research, 2012, 22(2) : 398-414. doi: 10.1016/j.gr.2011.10.012 |
[74] | Canales J P. Small-Scale Structure of the Kane Oceanic Core Complex, Mid-Atlantic Ridge 23°30′N, from Wave Form To mography of Multichannel Seismic Date[J]. Geophysical Research Letters, 2010, 37(21) : 1-6. |
[75] | 潘桂棠, 王立全, 尹福光, 等. 从多岛弧盆系研究实践看板块构造登陆的魅力[J]. 地质通报, 2004, 23(9/10) : 933-939. |
[76] | McDermid I R C, Aitchison J C, Davis A M, et al. The Zedong terrane: a Late Jurassic intra-oceanic magmatic arc within the Yarlung- Tsangpo suture zone, southeastern Tibet[J]. Chemical Geology, 2002, 187: 267-277. doi: 10.1016/S0009-2541(02)00040-2 |
[77] | 韦栋梁, 夏斌, 周国庆, 等. 西藏泽当英云闪长岩的地球化学和Sr-Nd同位素特征: 特提斯洋内俯冲的新证据[J]. 中国科学(D辑), 2007, 37(4) : 442-450. |
[78] | 许荣科, 郑有业, 冯庆来, 等. 西藏札达县夏浦沟的放射虫硅质岩和岛弧火山岩: 新特提斯洋内俯冲体系的记录?[J]. 地球科学(中国地质大学学报), 2009, 34(6) : 884-894. |
[79] | 程晨, 夏斌, 郑浩, 等. 西藏雅鲁藏布江缝合带西段达巴蛇绿岩年代学、地球化学特征及其构造意义[J]. 地球科学, 2018, 43(4) : 975-990. |
[80] | Butler J P, Beaumont C. Subduction zone decoupling/retreat modelingexplains south Tibet(Xigaze) and other supra-subduction zone ophiolites and their UHP mineral phases[J]. Earth and Planetary Science Letters, 2017, 463: 101-117. doi: 10.1016/j.epsl.2017.01.025 |
① | 西藏自治区区域地质调查大队. 中华人民共和国1: 25万区域地质图: 日喀则幅. 2004. |
Tectonic frame work of Tibetan Plateau(a) and regional geological map of the Rikaze area(b)
Micrographs of Xialu gabbro(a) and diabase(b)
CL images and U-Pb concordia diagram of zircons from Xialu gabbro (11XL-1)
Diagrams of Nb/ Y-Zr/TiO2 ×0.0001 (a) and SiO2-TFeO/MgO (b) of Xialu gabbros and diabases
Major elements versus Mg# diagrams for Xialu gabbros and diabases
Chondrite normalized rare earth elements pattern (a) and primitive mantle normalized trace elements pattern (b) of Xialu gabbros and diabases
Diagrams of La-La/Sm (a) and CaO-CaO/Al2O3(b) of Xialu gabbros and diabases
Diagrams of (Ce/Yb)N-(Dy/Yb)N (a) and La/Sm-Sm/Yb (b) of Xialu gabbros and diabases
Diagrams of Zr-Zr/ Y(a), Ti/10000-V(b), Th-Hf/3-Ta(c) and Zr/4-Nb×2-Y(d)of Xialu gabbros and diabases
Diagrams of Nb/Yb-Th/Yb (a) and Th-Ba/Th (b) for Early Cretaceous MORB-type metabasites in the Xigaze ophiolite
Variations of Yb and Ce contents for Early Cretaceous MORB-type metabasites in the Xigaze ophiolite