2021 Vol. 40, No. 11
Article Contents

LIU Han, WANG Baodi, CHEN Li, WANG Liquan, ZHANG Yujie, LI Jun, GOU Zhengbin, ZHANG Shizhen. Xialu N-MORB gabbros and diabases in the Xigaze ophiolite: Record of subduction initiation of the Yarlung Zangbo Tethyan Ocean at Early Cretaceous[J]. Geological Bulletin of China, 2021, 40(11): 1836-1851.
Citation: LIU Han, WANG Baodi, CHEN Li, WANG Liquan, ZHANG Yujie, LI Jun, GOU Zhengbin, ZHANG Shizhen. Xialu N-MORB gabbros and diabases in the Xigaze ophiolite: Record of subduction initiation of the Yarlung Zangbo Tethyan Ocean at Early Cretaceous[J]. Geological Bulletin of China, 2021, 40(11): 1836-1851.

Xialu N-MORB gabbros and diabases in the Xigaze ophiolite: Record of subduction initiation of the Yarlung Zangbo Tethyan Ocean at Early Cretaceous

  • The 130~120 Ma ophiolite is the most widely distributed in the Yarlung Zangbo suture zone, however, its formation environment remains controversial.Based on zircon U-Pb ages, whole-rock geochemical date of Xialu gabbros and diabases, and a large number of data of Xigaze ophiolite, the tectonic environment and dynamic significance of Early Cretaceous ophiolite were discussed.LA-ICP-MS zircon U-Pb dating of the Xialu gabbro yields weighted mean age of 123.8 ± 1.1 Ma(MSWD = 0.97), indicating one of the 130~120 Ma Xigaze ophiolite relics.Some gabbro samples are characterized by high Cao, low SiO2 and very low K2O and Na2O contents, which can be attributed to a rodingitization process, whereas diabases suffer from minimal affection of fluid.Xialu gabbros and diabases show N-MORB type characteristics and more depleted in light rare earth elements than normal N-MORB, suggesting high degree partial melting of a depleted mantle of spinel lherzolite source.The N-MORB basic rocks of the 130~120 Ma ophiolite in Xigaze were generated from a mantle source with inhomogeneous mixture of subduction components, and characterized by the transition from MORB to VAB, with a minimal adding of continental crust, which suggest that the Xigaze ophiolite was formed in an intra-oceanic arc system.Combined with regional geology, it is suggested that the 130~120 Ma ophiolite in Xigaze is similar to the IBM fore-arc ophiolite in development time, lithology and geochemistry, representing a subduction initiation in the Yarlung Zangbo Tethys Ocean.

  • 加载中
  • [1] Dai J G, Wang C S, Hébert R, et al. Late Devonian OIB alkaline gabbro in the Yarlung Zangbo Suture Zone: Remnants of the Paleo-Tethys?[J]. Gondwana Research, 2011, 19(1) : 232-243. doi: 10.1016/j.gr.2010.05.015

    CrossRef Google Scholar

    [2] 郎兴海, 唐菊兴, 邓煜霖, 等. 西藏拉萨地块南缘雄村矿集区首次发现早石炭世辉长岩: 古特提斯洋的残留?[J]. 地球学报, 2017, 38(5) : 745-753.

    Google Scholar

    [3] Xia B, Chen G W, Wang R, et al. Seamount volcanism associated with the Xigaze ophiolite, Southern Tibet[J]. Journal of Asian Earth Sciences, 2008, 32: 396-405. doi: 10.1016/j.jseaes.2007.11.008

    CrossRef Google Scholar

    [4] 李文霞, 赵志丹, 朱弟成, 等. 西藏雅鲁藏布蛇绿岩形成构造环境的地球化学鉴别[J]. 岩石学报, 2012, 28(5) : 1663-1673.

    Google Scholar

    [5] Dai J G, Wang C S, Li Y L. Relicts of the Early Cretaceous seamounts in the central-western Yarlung Zangbo Suture Zone, southern Tibet[J]. Journal of Asian Earth Sciences, 2012, 53: 25-37. doi: 10.1016/j.jseaes.2011.12.024

    CrossRef Google Scholar

    [6] Reagan M K, Ishizuka O, Stern R J, et al. Fore-arc basalts and subduction initiation in the Izu-Bonin -Mariana system[J]. Geochemistry, Geophysics, Geosystems, 2010, 11, Q03X12. doi:10.1029/2009GC002871.

    CrossRef Google Scholar

    [7] Ishizuka O, Tani K, Reagan M K, et al. The timescales of subduction initiation and subsequent evolution of an oceanic island arc[J]. Earth and Planetary Science Letters, 2011, 306(3/4) : 229-240.

    Google Scholar

    [8] 陈根文, 夏斌, 钟志洪, 等. 西藏得几蛇绿岩体中玻安岩的地球化学特征及其地质意义[J]. 矿物学报, 2003, 23(1) : 91-96. doi: 10.3321/j.issn:1000-4734.2003.01.015

    CrossRef Google Scholar

    [9] 郑来林, 耿全如, 欧春生, 等. 藏东南迦巴瓦地区雅鲁藏布江蛇绿混杂岩中玻安岩的地球化学特征和地质意义[J]. 地质通报, 2003, 22(11/12) : 8-11.

    Google Scholar

    [10] Dai J G, Wang C S, Polat A, et al. Rapid forearc preading between 130 and 120 Ma: evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet[J]. Lithos, 2013, 172/173: 1-16.

    Google Scholar

    [11] Liu W L, Zhong Y, Sun Z L, et al. The Late Jurassic Zedong ophiolite: A remnant of subduction initiation within the Yarlung Zangbo Suture Zone(southern Tibet) and its tectonic implications[J]. Gondwana Research, 2020, 78: 172-188. doi: 10.1016/j.gr.2019.09.002

    CrossRef Google Scholar

    [12] 吴浩若. 西藏南部下鲁硅岩晚侏罗世罩笼虫(放射虫) 新材料[J]. 现代地质, 2000, 14(3) : 301-306. doi: 10.3969/j.issn.1000-8527.2000.03.011

    CrossRef Google Scholar

    [13] Guilmette C, Hébert R, Wang C S, et al. Geochemistry and geochronology of the metamorphic sole underlying the Xigaze Ophiolite, Yarlung Zangbo Suture Zone, South Tibet[J]. Lithos, 2009, 112: 149-162. doi: 10.1016/j.lithos.2009.05.027

    CrossRef Google Scholar

    [14] Hébert R, Bezard R, Guilmette C, et al. The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys[J]. Gondwana Research, 2012, 22(2) : 377-397. doi: 10.1016/j.gr.2011.10.013

    CrossRef Google Scholar

    [15] Aitchison J C, Zhu B D, Davis A M, et al. Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung. Zangbo suture(southern Tibet) [J]. Earth and Planetary Science Letters, 2000, (183) : 231-244.

    Google Scholar

    [16] Dupuis C, Hébert R, Dubois-Côté V, et al. The Yarlung Zangbo Suture Zone ophiolitic melange(southern Tibet) [J]. Journal of Asian Earth Sciences, 2005, 25: 937-960. doi: 10.1016/j.jseaes.2004.09.004

    CrossRef Google Scholar

    [17] Bezard R, Hébert R, Wang C S, et al. Petrology and geochemistry of the Xiugugabu ophiolitic massif, western Yarlung Zangbo suture zone, Tibet[J]. Lithos, 2011, 125: 347-367. doi: 10.1016/j.lithos.2011.02.019

    CrossRef Google Scholar

    [18] Xia B, Yu H J, Chen G W, et al. Geochemistry and tectonic environment of the Dagzhuka ophiolite in the Yarlung-Zangbo suture zone, Tibet[J]. Geochemical Journal, 2003, 37: 311-324. doi: 10.2343/geochemj.37.311

    CrossRef Google Scholar

    [19] Zhang S Q, Mahoney J J, Mo X X, et al. Evidence for a Widespread Tethyan Upper Mantle with Indian-Ocean-Type Isotopic Characteristics[J]. Journal of Petrology, 2005, 46(4) : 829-858. doi: 10.1093/petrology/egi002

    CrossRef Google Scholar

    [20] Xiong Q, Griffin W L, Zheng J P, et al. Southward trench migration at ~130-120 Ma caused accretion of the Neo-Tethyan forearc lithosphere in Tibetan ophiolites[J]. Earth and Planetary Science Letters, 2016, 438: 57-65. doi: 10.1016/j.epsl.2016.01.014

    CrossRef Google Scholar

    [21] 吴福元, 刘传周, 张亮亮, 等. 雅鲁藏布蛇绿岩——事实与臆想[J]. 岩石学报, 2014, 30(2) : 293-325.

    Google Scholar

    [22] Liu T, Wu F Y, Zhang L L, et al. Zircon U-Pb geochronological constraints on rapid exhumation of the mantle peridotite of the Xigaze ophiolite, southern Tibet[J]. Chemical Geology, 2016, 443: 67-86. doi: 10.1016/j.chemgeo.2016.09.015

    CrossRef Google Scholar

    [23] 刘飞, 连东洋, 牛晓露, 等. 雅鲁藏布江缝合带西段东波MORB型均质辉长岩的大洋核杂岩成因[J]. 地球科学, 2018, 43(4) : 952-974.

    Google Scholar

    [24] 潘桂棠, 王立全, 李兴振, 等. 青藏高原区域构造格局及其多岛弧盆系的空间配置[J]. 沉积与特提斯地质, 2001, 21(3) : 1-26. doi: 10.3969/j.issn.1009-3850.2001.03.001

    CrossRef Google Scholar

    [25] 王立全, 朱同兴. 青藏高原及邻区地质图说明书(1: 1500000) [M]. 北京: 地质出版社, 2013: 1-319.

    Google Scholar

    [26] 潘桂棠, 陈智梁, 李兴振. 东特提斯地质构造形成演化[M]. 北京: 地质出版社, 1997: 1-100.

    Google Scholar

    [27] 吴浩若. 西藏南部和地中海西部白垩纪中期放射虫化石的对比[J]. 微体古生物学报, 2010, 27(4) : 299-304.

    Google Scholar

    [28] Ziabrev S V, Aitchison J C, Abrajevitch A V, et al. Precise radiolarian age constraints on the timing of ophiolite generation and sedimentation in the Dazhuqu terrane, Yarlung-Tsangpo suture zone, Tibet[J]. Journal of the Geological Society, 2003, 160: 591-599. doi: 10.1144/0016-764902-107

    CrossRef Google Scholar

    [29] 朱杰, 杜远生, 刘早学, 等. 西藏雅鲁藏布江缝合带中段中生代放射虫硅质岩成因及其大地构造意义[J]. 中国科学(D辑), 2005, 35(12) : 1131-1139.

    Google Scholar

    [30] Göpel C, Allègre C J, Xu R H. Lead isotopic study of the Xigaze ophiolite(Tibet) the problem of the relationship between magmatites(gabbros, dolerites, lavas) and tectonites(harzburgites) [J]. Earth and Planetary Science Letters, 1984, 69: 301-310. doi: 10.1016/0012-821X(84)90189-4

    CrossRef Google Scholar

    [31] Malpas J, Zhou M F, Robinson P T, et al. Geochemical and geochronological constraints on the origin and emplacement of the Yarlung Zangbo ophiolites, Southern Tibet[J]. Geological Society, 2003, 218: 191-206. doi: 10.1144/GSL.SP.2003.218.01.11

    CrossRef Google Scholar

    [32] 王冉, 夏斌, 周庆国, 等. 西藏吉定蛇绿岩中辉长岩SHRIMP锆石U-Pb年龄[J]. 科学通报, 2006, 51(1) : 114-117. doi: 10.3321/j.issn:0023-074X.2006.01.021

    CrossRef Google Scholar

    [33] Huot F, Hébert R, Varfalvy V, et al. The Beimarang mélange(southern Tibet) brings additional constraints in assessing the origin, metamorphic evolution and obduction processes of the Yarlung Zangbo ophiolite[J]. Journal of Asian Earth Sciences, 2002, 21: 307-322. doi: 10.1016/S1367-9120(02)00053-6

    CrossRef Google Scholar

    [34] 牛晓露, 赵志丹, Depaolo D J, 等. 西藏日喀则地区德村-昂仁蛇绿岩内基性岩的元素与Sr-Nd-Pb同位素地球化学及其揭示的特提斯地幔域特征[J]. 岩石学报, 2006, 22(12) : 2875-2888.

    Google Scholar

    [35] 朱弟成, 莫宣学, 王立全, 等. 新特提斯演化的热点与洋脊相互作用: 西藏南部晚侏罗世—早白垩世岩浆作用推论[J]. 岩石学报, 2008, 24(2) : 225-237.

    Google Scholar

    [36] Huang F, Xu J F, Zeng Y C, et al. Slab Breakoff of the Neo-Tethys Ocean in the Lhasa Terrane Inferred From Contemporaneous Melting of the Mantle and Crust[J]. Geochemistry Geophysics Geosystems, 2017, 18(11) : 4074-4095. doi: 10.1002/2017GC007039

    CrossRef Google Scholar

    [37] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2) : 34-43.

    Google Scholar

    [38] Ludwig K R. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, California, Berkeley, 2003: 1-77.

    Google Scholar

    [39] 刘颖, 刘海臣, 李献华. 用ICP-MS准确测定岩石样品中的40余种微量元素[J]. 地球化学, 1996, 25(6) : 552-558. doi: 10.3321/j.issn:0379-1726.1996.06.004

    CrossRef Google Scholar

    [40] Reagan M K, McClelland W C, Girard G, et al. The geology of the southern Mariana fore-arc crust: Implications for the scale of Eocene volcanism in the western Pacific[J]. Earth and Planetary Science Letters, 2013, 380: 41-51. doi: 10.1016/j.epsl.2013.08.013

    CrossRef Google Scholar

    [41] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society Special Publication, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [42] Sylvester P J, Campbell I H, Bowyer D A. Niobium/Uranium Evidence for Early Formation of the Continental Crust[J]. Science, 1997, 275 : 521-523. doi: 10.1126/science.275.5299.521

    CrossRef Google Scholar

    [43] Pthman B D, White W M, Patchett J. The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling[J]. Earth Planetary Science Letters, 1989, 94: 1-21. doi: 10.1016/0012-821X(89)90079-4

    CrossRef Google Scholar

    [44] 李曙光. 蛇绿岩生成构造环境的Ba-Th-Nb-La判别图[J]. 岩石学报, 1993, 9(2) : 146-157. doi: 10.3321/j.issn:1000-0569.1993.02.005

    CrossRef Google Scholar

    [45] Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145: 325-394. doi: 10.1016/S0009-2541(97)00150-2

    CrossRef Google Scholar

    [46] Niu Y L. The Meaning of Global Ocean Ridge Basalt Major Element Compositions[J]. Journal of Petrology, 2016, 57(11/12) : 2081-2104.

    Google Scholar

    [47] 李昌年. 火成岩微量元素地球化学[M]. 武汉: 中国地质大学出版社, 1992: 1-195.

    Google Scholar

    [48] Roex A P, Dick H J B, Erlank A J, et al. Geochemistry, mineralogy and petrogenesis of lavas erupted along the southwest Indian Ridge between the Bouver triple junction and degree east[J]. Journal of Petrology, 1983, 24(3) : 267-318. doi: 10.1093/petrology/24.3.267

    CrossRef Google Scholar

    [49] 赵佳楠, 许志琴, 梁凤华, 等. 西藏日喀则地区白朗蛇绿岩中石榴辉石岩的岩石地球化学、年代学及其构造意义[J]. 岩石学报, 2015, 31(12) : 3687-3700.

    Google Scholar

    [50] Saccani E. A new method of discriminating different types of post-Archean Ophiolitic Basalts and Their Tectonic Signficance Using Th-Nb and Ce-Dy-Yb Systematics[J]. Geoscience Fronticrs, 2015, 6(4) : 481-501. doi: 10.1016/j.gsf.2014.03.006

    CrossRef Google Scholar

    [51] 肖龙, 徐义刚, 梅厚钧, 等. 云南宾川地区峨眉山玄武岩地球化学特征: 岩石类型及随时间演化规律[J]. 地质科学, 2003, 38(4) : 478-494. doi: 10.3321/j.issn:0563-5020.2003.04.007

    CrossRef Google Scholar

    [52] Aldanmaz E, Pearce J A, Thirlwall M F, et al. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research, 2000, 102: 67-95. doi: 10.1016/S0377-0273(00)00182-7

    CrossRef Google Scholar

    [53] 吴浩若. 西藏南部白垩纪深海沉积地层——冲堆组及其地质意义[J]. 地质科学, 1984, 1: 26-33.

    Google Scholar

    [54] Matsuoka A, Yang Q, Kobayashi K, et al. JurassiceCretaceous radiolarian biostratigraphy and sedimentary environments of the Ceno- Tethys: records from the Xialu Chert in the Yarlung- Zangbo Suture Zone, southern Tibet[J]. Journal of Asian Earth Sciences, 2002, 20(3) : 277-287. doi: 10.1016/S1367-9120(01)00044-X

    CrossRef Google Scholar

    [55] 王玉净, 舒良树. 中国蛇绿岩带形成时代研究中的两个误区[J]. 古生物学报, 2001, 40(4) : 529-532. doi: 10.3969/j.issn.0001-6616.2001.04.014

    CrossRef Google Scholar

    [56] Ngai Chan G H, Aitchison J C, Crowley Q G, et al. Michael P. Searle A, U-Pb zircon ages for Yarlung Tsangpo suture zone ophiolites, southwestern Tibet and their tectonic implications[J]. Gondwana Research, 2015, 27: 719-732. doi: 10.1016/j.gr.2013.06.016

    CrossRef Google Scholar

    [57] 李建峰, 夏斌, 刘立文, 等. 西藏群让蛇绿岩辉长岩SHRIMP锆石U-Pb年龄及地质意义[J]. 大地构造与成矿学, 2009.33(2) : 294-298. doi: 10.3969/j.issn.1001-1552.2009.02.013

    CrossRef Google Scholar

    [58] Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y, and Nb Variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69: 33-37. doi: 10.1007/BF00375192

    CrossRef Google Scholar

    [59] Shervais J W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J]. Earth and Planetary Science Letter, 1982, 59: 110-118.

    Google Scholar

    [60] Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province[J]. Earth and Planetary Science Letters, 1980, 50(1) : 11-30. doi: 10.1016/0012-821X(80)90116-8

    CrossRef Google Scholar

    [61] Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986, 56: 207-218. doi: 10.1016/0009-2541(86)90004-5

    CrossRef Google Scholar

    [62] McKenzie D, O'nions R K. Partial melt distributions from inversion of rare earth element concentrations[J]. Journal of Petrology, 1991, 32(5) : 1021-1091. doi: 10.1093/petrology/32.5.1021

    CrossRef Google Scholar

    [63] Dubois-Côté V, HéBert R, Dupuis C, et al. Petrological and geochemical evidence for the origin of the Yarlung Zangbo ophiolites, southern Tibet[J]. Chemical Geology, 2005, 214: 265-286. doi: 10.1016/j.chemgeo.2004.10.004

    CrossRef Google Scholar

    [64] Condie K C. Mafic crustal xenoliths and the origin of the lower continental crust[J]. Lithos, 1999, 46: 95-101. doi: 10.1016/S0024-4937(98)00056-5

    CrossRef Google Scholar

    [65] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4) : 956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [66] Pearce J A, Stern R J, Bloomer S H, et al. Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(7) : p. Q07006. doi:10.1029/2004GC000895.

    CrossRef Google Scholar

    [67] El-Rahman Y A, Polat A, Dilek Y, et al. Geochemistry and tectonic evolution of the neoproterozoic wadi ghadir ophiolite, eastern desert, Egypt[J]. Lithos, 2009, 113(1/2), 158-178.

    Google Scholar

    [68] Hawkesworth C J, Gallagher K, Hergt J M, et al. Mantle and slab contributions in arc magmas[J]. Annual Review of Earth and Planetary Sciences, 1993, 21: 175-204. doi: 10.1146/annurev.ea.21.050193.001135

    CrossRef Google Scholar

    [69] 李源, 杨经绥, 裴先治, 等. 秦岭造山带早古生代蛇绿岩的多阶段演化: 从岛弧到弧间盆地[J]. 岩石学报, 2012, 28(6) : 1896-1914.

    Google Scholar

    [70] 夏斌, 王冉, 陈根文. 西藏仁布蛇绿岩壳层熔岩的岩石地球化学及成因[J]. 高校地质学报, 2003, 9(4) : 638-647. doi: 10.3969/j.issn.1006-7493.2003.04.015

    CrossRef Google Scholar

    [71] Chen G W, Xia B. Platinum-group elemental geochemistry of mafic and ultramafic rocks from the Xigaze ophiolite, southern Tibet[J]. Journal of Asian Earth Sciences, 2008, 32: 406-422. doi: 10.1016/j.jseaes.2007.11.009

    CrossRef Google Scholar

    [72] Whattam S A, Stern R J. The 'subduction initiation rule': a key for linking ophiolites, intra-oceanic forearcs, and subduction initiation[J]. Contributions to Mineralogy & Petrology, 2011, 162: 1031-1045.

    Google Scholar

    [73] Guilmette C, Hébert R, Dostal J, et al. Discovery of a dismembered metamorphic sole in the Saga ophiolitic mélange, South Tibet: Assessing an Early Cretaceous disruption of the Neo-Tethyan supra-subduction zone and consequences on basin closing[J]. Gondwana Research, 2012, 22(2) : 398-414. doi: 10.1016/j.gr.2011.10.012

    CrossRef Google Scholar

    [74] Canales J P. Small-Scale Structure of the Kane Oceanic Core Complex, Mid-Atlantic Ridge 23°30′N, from Wave Form To mography of Multichannel Seismic Date[J]. Geophysical Research Letters, 2010, 37(21) : 1-6.

    Google Scholar

    [75] 潘桂棠, 王立全, 尹福光, 等. 从多岛弧盆系研究实践看板块构造登陆的魅力[J]. 地质通报, 2004, 23(9/10) : 933-939.

    Google Scholar

    [76] McDermid I R C, Aitchison J C, Davis A M, et al. The Zedong terrane: a Late Jurassic intra-oceanic magmatic arc within the Yarlung- Tsangpo suture zone, southeastern Tibet[J]. Chemical Geology, 2002, 187: 267-277. doi: 10.1016/S0009-2541(02)00040-2

    CrossRef Google Scholar

    [77] 韦栋梁, 夏斌, 周国庆, 等. 西藏泽当英云闪长岩的地球化学和Sr-Nd同位素特征: 特提斯洋内俯冲的新证据[J]. 中国科学(D辑), 2007, 37(4) : 442-450.

    Google Scholar

    [78] 许荣科, 郑有业, 冯庆来, 等. 西藏札达县夏浦沟的放射虫硅质岩和岛弧火山岩: 新特提斯洋内俯冲体系的记录?[J]. 地球科学(中国地质大学学报), 2009, 34(6) : 884-894.

    Google Scholar

    [79] 程晨, 夏斌, 郑浩, 等. 西藏雅鲁藏布江缝合带西段达巴蛇绿岩年代学、地球化学特征及其构造意义[J]. 地球科学, 2018, 43(4) : 975-990.

    Google Scholar

    [80] Butler J P, Beaumont C. Subduction zone decoupling/retreat modelingexplains south Tibet(Xigaze) and other supra-subduction zone ophiolites and their UHP mineral phases[J]. Earth and Planetary Science Letters, 2017, 463: 101-117. doi: 10.1016/j.epsl.2017.01.025

    CrossRef Google Scholar

    西藏自治区区域地质调查大队. 中华人民共和国1: 25万区域地质图: 日喀则幅. 2004.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(2)

Article Metrics

Article views(2133) PDF downloads(19) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint