2021 Vol. 40, No. 10
Article Contents

HAO Shilong, LI Chenglu, DING Jishuang, YU Yuanbang, ZHAO Huanli, LI Bowen. Discovery of Middle Jurassic volcanic rocks in the Duobaoshan area of Heilongjiang Province and constraints on the influence area of the Mongolian-Okhotsk Ocean closure[J]. Geological Bulletin of China, 2021, 40(10): 1757-1772.
Citation: HAO Shilong, LI Chenglu, DING Jishuang, YU Yuanbang, ZHAO Huanli, LI Bowen. Discovery of Middle Jurassic volcanic rocks in the Duobaoshan area of Heilongjiang Province and constraints on the influence area of the Mongolian-Okhotsk Ocean closure[J]. Geological Bulletin of China, 2021, 40(10): 1757-1772.

Discovery of Middle Jurassic volcanic rocks in the Duobaoshan area of Heilongjiang Province and constraints on the influence area of the Mongolian-Okhotsk Ocean closure

More Information
  • The Duobaoshan area of Heilongjiang Province is located in the eastern part of the Central Asian Orogenic Belt and the southeastern margin of the Xing'an Block, where large areas of Early-Middle Jurassic intrusive rocks are developed, but no contemporaneous volcanic rock has been reported there. During the exploration of gold deposits in the Duobaoshan area, volcanic rocks of the same period were discovered for the first time and they were identified as a suit of dacite, rhyolite, and trachyte. Zircon U-Pb dating and petrogeochemical analyses were carried out on these volcanic rocks to further clarify their formation age and tectonic significance. The U-Pb dating of zircons from the volcanic rocks yielded ages of 167.1~169.3 Ma, indicating that these rocks erupted during Middle Jurassic. The petrogeochemical analysis shows that the volcanic rocks are characterized by high alkali (Na2O+ K2O=3.70%~7.66%) and aluminum (Al2O3=11.42%~19.00%), and are peraluminous (A/CNK=1.08~3.73) with high potassium calcium alkali. The rare earth elements are characterized by the enrichment of light rare earth elements and right-leaning of heavy rare earth elements depletion, with slightly negative Eu anomalies (δEu=0.53~0.79).Trace elements are enriched in Rb, Ba, K, Th, U and Pb, and depleted in Nb, Ta, Ti, P and Sr.It is generally shown that the Mid-Jurassic volcanic rocks were derived from the partial melting of newly continental crust material. The discriminant diagrams of Ta-Yb and Nb-Y indicates that the Middle Jurassic volcanic rocks were formed in the compressional background. Combined with the regional tectonic setting and evolution characteristics, it is concluded that the Middle Jurassic volcanic rocks should be the product of the continent-continent collision caused by Mongolian-Okhotsk Ocean closure.Indicatively, the collision affected the southeastern margin of the Xing'an Block.

  • 加载中
  • [1] 许文良, 王枫, 裴福萍, 等. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 2013, 29(2): 339-353.

    Google Scholar

    [2] 郝宇杰. 黑龙江省多宝山矿集区成矿作用与成矿规律研究[D]. 吉林大学博士学位论文, 2015.

    Google Scholar

    [3] 吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    CrossRef Google Scholar

    [4] 隋振民, 葛文春, 吴福元, 等. 大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因[J]. 岩石学报, 2007, 23(2): 279-298.

    Google Scholar

    [5] 赵院冬, 车继英, 吴大天, 等. 小兴安岭西北部早-中侏罗世TTG花岗岩年代学、地球化学特征及构造意义[J]. 吉林大学学报: 地球科学版, 2017, 47(4): 1119-1137.

    Google Scholar

    [6] 徐文喜, 李成禄. 大兴安岭东北部霍龙门地区中侏罗世花岗岩——锆石U-Pb年龄、地球化学特征及构造意义[J]. 地质与资源, 2018, 27(6): 23-31.

    Google Scholar

    [7] 苗来成, 范蔚茗, 张福勤, 等. 小兴安岭西北部新开岭-科洛杂岩锆石SHRIMP年代学研究及其意义[J]. 科学通报, 2003, 48(22): 19-27.

    Google Scholar

    [8] 赵海滨, 莫宣学, 徐受民, 等. 黑龙江新开岭变质核杂岩的组成及其演化[J]. 地质科学, 2007, 42(1): 176-188. doi: 10.3321/j.issn:0563-5020.2007.01.015

    CrossRef Google Scholar

    [9] 曾涛, 王涛, 郭磊, 等. 东北新开岭地区晚中生代花岗岩类时代、成因及地质意义[J]. 吉林大学学报: 地球科学版, 2011, 41(6): 1881-1900.

    Google Scholar

    [10] 李森林, 陈跃军, 李云峰, 等. 黑河新生地区中侏罗世花岗质岩石锆石U-Pb年龄、地球化学特征及岩石成因[J]. 世界地质, 2016, 35(2): 297-308. doi: 10.3969/j.issn.1004-5589.2016.02.002

    CrossRef Google Scholar

    [11] 李仰春, 张克信, 吴淦国, 等. 大-小兴安岭接合部早-中侏罗世侵入岩SHRIMP锆石U-Pb定年及成因[J]. 地质通报, 2013, 32(5): 717-729. doi: 10.3969/j.issn.1671-2552.2013.05.004

    CrossRef Google Scholar

    [12] 张渝金, 吴新伟, 张超, 等. 黑龙江龙江盆地中侏罗统万宝组时代确定新证据及其地质意义[J]. 地学前缘, 2018, 25(1): 182-196.

    Google Scholar

    [13] 李宇, 丁磊磊, 许文良, 等. 孙吴地区中侏罗世白云母花岗岩的年代学与地球化学: 对蒙古-鄂霍茨克洋闭合时间的限定[J]. 岩石学报, 2015, 31(1): 56-66.

    Google Scholar

    [14] Zorin Y. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia[J]. Tectonophysics, 1999, 306(1): 33-56. doi: 10.1016/S0040-1951(99)00042-6

    CrossRef Google Scholar

    [15] Tomurtogoo O, Windley B F, Kröner A, et al. Zircon age and occurrence of the Adaatsag ophiolite and Muronshear zone, central Mongolia: Constraints on the evolution of the Mongol-Okhotsk Ocean, suture and orogen[J]. Journal of the Geological Society, 2005, 162(1): 125-134. doi: 10.1144/0016-764903-146

    CrossRef Google Scholar

    [16] Kelty T, Yin A, Dash B, et al. Detritalzircon geochronology of Paleozoic sedimentary rocks in the Hangay-Hentey basin, north-central Mongolia: Implications for the tectonic evolution of the Mongol-Okhotsk Ocean in central Asia[J]. Tectonophysics, 2008, 451(1/4): 290-311.

    Google Scholar

    [17] Feng Y Z, Chen H Y, Xiao B, et al. Late Mesozoic magmatism at Xiaokelehe Cu Mo deposit in Great Xing'an Range, NE China: Geodynamic and metallogenic implications[J]. Lithos, 2020, 374/375: 105713. doi: 10.1016/j.lithos.2020.105713

    CrossRef Google Scholar

    [18] 葛文春, 林强, 李献华, 等. 大兴安岭北部伊列克得组玄武岩的地球化学特征[J]. 矿物岩石, 2000, 20(3): 14-18. doi: 10.3969/j.issn.1001-6872.2000.03.003

    CrossRef Google Scholar

    [19] 葛文春, 林强, 孙德有, 等. 大兴安岭中生代两类流纹岩成因的地球化学研究[J]. 地球科学, 2000, 25(2): 172-178.

    Google Scholar

    [20] 林强, 葛文春, 曹林, 等. 大兴安岭中生代双峰式火山岩的地球化学特征[J]. 地球化学, 2003, 32(3): 208-222. doi: 10.3321/j.issn:0379-1726.2003.03.002

    CrossRef Google Scholar

    [21] Fan W M, Guo F, Wang Y J, et al. Late Mesozoic calcalkaline volcanism of post-orogenic extension in the northern DaHinggan Mountains, northeastern China[J]. Journal of Volcanology and Geothermal Research, 2003, 121(1): 151-135.

    Google Scholar

    [22] 张玉涛, 张连昌, 英基丰, 等. 大兴安岭北段塔河地区早白垩世火山岩地球化学及源区特征[J]. 岩石学报, 2007, 23(11): 2811-2822. doi: 10.3969/j.issn.1000-0569.2007.11.012

    CrossRef Google Scholar

    [23] 赵国龙, 杨桂林, 王忠. 大兴安岭中南部中生代火山岩[M]. 北京: 北京科学技术出版社, 1989.

    Google Scholar

    [24] Wu F Y, Yang J H, Lo C H, et al. The Heilongjiang Group: a Jurassic aceretionary complex in the Jiamusi massif at the western Pacific margin of northeastern China[J]. The Island Arc, 2007, 16(1): 156-172. doi: 10.1111/j.1440-1738.2007.00564.x

    CrossRef Google Scholar

    [25] 张吉衡. 大兴安岭中生代火山岩年代学及地球化学研究[D]. 中国地质大学(北京) 博士学位论文, 2009.

    Google Scholar

    [26] 李成禄, 曲晖, 赵忠海, 等. 黑龙江省霍龙门地区成矿地质特征及潜力分析[J]. 地质与资源, 2013, 22(4): 273-279. doi: 10.3969/j.issn.1671-1947.2013.04.003

    CrossRef Google Scholar

    [27] 李成禄, 曲晖, 赵忠海, 等. 黑龙江霍龙门地区早石炭世花岗岩的锆石U-Pb年龄、地球化学特征及构造意义[J]. 中国地质, 2013, 40(3): 859-868. doi: 10.3969/j.issn.1000-3657.2013.03.017

    CrossRef Google Scholar

    [28] 李成禄, 徐文喜, 李胜荣, 等. 大兴安岭东北部霍龙门地区早二叠世花岗岩的锆石U-Pb年龄、地球化学特征及构造意义[J]. 矿物岩石, 2017, 37(3): 46-54.

    Google Scholar

    [29] Zong K Q, Klemd R, Yuan Y, et al. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900Ma) high-grade meta morphism and continental arcformation in the southern Beishan Orogen, southern Central Asian Orogenic Belt(CAOB)[J]. Precam-brian Research, 2017, 290: 32-48.

    Google Scholar

    [30] Liu Y S, Hu Z C, Gao S, et al. Insitu analysis of major and traceelements of an hydrous minerals by LA-ICP-MS without applying ninternal standard[J]. Chemical Geology, 2008, 257: 34-43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [31] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crustre cycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and traceelements in zircons of mantle xenoliths[J]. Journal of Petrology, 2010, 51: 53-571.

    Google Scholar

    [32] Ludwig K R. ISOPLOT3.00: A Geochronological Tool kit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center, California, 2003.

    Google Scholar

    [33] 邓晋福, 刘翠, 冯艳芳, 等. 关于火成岩常用图解的正确使用: 讨论与建议[J]. 地质论评, 2015, 61(4): 717-734.

    Google Scholar

    [34] Le Maitre R W. Igneous Rocks, A classification and glossary of terms[M]. Cambridge: Cambridge University Press, 2002: 1-236.

    Google Scholar

    [35] Peccerillo R, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contrib. Mineral Petrol., 1976, 58: 63-81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [36] Middlemost E A K. Magmas and magmatic rocks[M]. London: Longman, 1985: 1-266.

    Google Scholar

    [37] Boynton W V. Geochemistry of the rare earth elements: Meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. Amsterdam: Elservier, 1984: 63-114.

    Google Scholar

    [38] Sun S S, McDonough W F. Chemical and isotopic systematics of ocean basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in Oceanic Basins. Geological Society, London, Special Publications, 1989, 42: 313-345.

    Google Scholar

    [39] Deng C Z, Sun G Y, Sun D Y, et al. Origin of C type adakite magmas in the NE Xing'an block, NE China and tectonic implication[J]. Ac. Geochim., 2018, 37: 281-294. doi: 10.1007/s11631-017-0190-2

    CrossRef Google Scholar

    [40] Wedepohl K H. The composition of the continental cruct[J]. Geochimica et Cosmochimica Acta, 1995, 59(7): 1217-1232. doi: 10.1016/0016-7037(95)00038-2

    CrossRef Google Scholar

    [41] 邓晋福, 罗昭华, 苏尚国, 等. 岩石成因、构造环境与成矿作用[M]. 北京: 地质出版社, 2004.

    Google Scholar

    [42] Rollison H R著. 杨学明, 杨晓勇, 陈双喜, 译. 岩石地球化学[M]. 合肥: 中国科学技术大学出版社, 2000.

    Google Scholar

    [43] 张遵忠, 顾连兴, 吴昌志, 等. 东天山印支早期尾亚石英正长岩成岩作用及成岩意义[J]. 岩石学报, 2006, 22(5): 1135-1149.

    Google Scholar

    [44] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25: 956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [45] Xu W L, Pei F P, Wang F, et al. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic regimes[J]. Journal of Asian Earth Sciences, 2013, 74(18): 167-193.

    Google Scholar

    [46] Miao L C, Zhang F Q, Zhu M S, et al. Zircon SHRIMP U-Pb dating of metamorphic complexes in the conjunction of the Greater and Lesser Xing'an Ranges, NE China: Timing of formation and metamorphism and tectonic implications[J]. Journal of Asian Earth Sciences, 2015, 114(4): 634-648.

    Google Scholar

    [47] Ying J F, Zhou X H, Zhang L C, et al. Geochronological framework of Mesozoic volcanic rocks in the Great Xing'an Range, NE China, and their geodynamic implications[J]. Journal of Asian Earth Sciences, 2010, 39(6): 786-793. doi: 10.1016/j.jseaes.2010.04.035

    CrossRef Google Scholar

    [48] Wu F Y, Sun D Y, Li H M, et al. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 2002, 187(1/2): 143-173.

    Google Scholar

    [49] Wang T, Tong Y, Zhang L, et al. Phanerozoic granitoids in the middle and eastern parts of Central Asia and their tectonic significance[J]. Journal of Asian Earth Sciences, 2017, 145: 368-392. doi: 10.1016/j.jseaes.2017.06.029

    CrossRef Google Scholar

    [50] Chu S X, Zeng Q D, Liu J M, et al. Early-Middle Jurassic magmatism and skarn-porphyry mineralization in NE China: Geochronological and geochemical constraints from the Sankuanggou skarn Fe-Cu-(Mo) deposit, and tectonic implications[J]. Journal of Geochemical Exploration, 2019, 200: 84-103. doi: 10.1016/j.gexplo.2019.01.013

    CrossRef Google Scholar

    [51] Li Y, Xu W L, Tang J, et al. Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing'an Massif of NE China: Implications for the evolution and spatial extent of the Mongol-Okhotsk tectonic regime[J]. Lithos, 2018, 304/307: 57-73. doi: 10.1016/j.lithos.2018.02.001

    CrossRef Google Scholar

    [52] Kravchinsky V A, Cogn J P, Harbert W P, et al. Evolution of the Mongol-Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia[J]. Geophysical Journal of the Royal Astronomical Society, 2010, 148(1): 34-57.

    Google Scholar

    [53] 陈志广, 张连昌, 卢百志, 等. 内蒙古太平川铜钼矿成矿斑岩时代、地球化学及地质意义[J]. 岩石学报, 2010, 26(5): 1437-1449.

    Google Scholar

    [54] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1-30. doi: 10.1016/j.jseaes.2010.11.014

    CrossRef Google Scholar

    [55] Zhang J H, Ge W C, Wu F Y, et al. Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, Northeastern China[J]. Lithos, 2008, 102(1/2): 138-157.

    Google Scholar

    [56] 王伟, 许文良, 王枫, 等. 满洲里-额尔古纳地区中生代花岗岩的锆石U-Pb年代学与岩石组合: 对区域构造演化的制约[J]. 高校地质学报, 2012, 18(1): 88-105. doi: 10.3969/j.issn.1006-7493.2012.01.008

    CrossRef Google Scholar

    [57] Zhang C H, Li C M, Deng H L, et al. Mesozoic contraction deformation in the Yanshan and northern Taihang Mountains and its implications to the destruction of the North China Craton[J]. Science China(Earth Sciences), 2011, 54(6): 798-822. doi: 10.1007/s11430-011-4180-7

    CrossRef Google Scholar

    [58] 赵越, 杨振宇, 马醒华. 东亚大地构造发展的重要转折[J]. 地质科学, 1994, 29(2): 105-119.

    Google Scholar

    [59] 赵越, 徐刚, 张拴宏, 等. 燕山运动与东亚构造体制的转变[J]. 地学前缘, 2004, 11(3): 319-328. doi: 10.3321/j.issn:1005-2321.2004.03.030

    CrossRef Google Scholar

    [60] Gao S, Rudnick R, Yuan H, et al. Recycling lower continental crust in the North China craton[J]. Nature, 2004, 432(7019): 892-897. doi: 10.1038/nature03162

    CrossRef Google Scholar

    [61] 刘健, 赵越, 柳小明. 冀北承德盆地髫髻山组火山岩的时代[J]. 岩石学报, 2006, 22(11): 2617-2630.

    Google Scholar

    [62] Yang W, Li S. Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: Implications for lithospheric thinning of the North China Craton[J]. Lithos, 2008, 102(1/2): 88-117.

    Google Scholar

    [63] 杜继宇, 宋维民, 杨佳林, 等. 大兴安岭中段东福岩体锆石U-Pb年龄、地球化学特征及构造背景[J]. 地质通报, 2020, 39(6): 919-928.

    Google Scholar

    [64] Zhou J B, Wilde S A, Zhao G C, et al. New SHRIMP U-Pb zircon ages from the Heilongjiang high-pressure belt: Constraints on the Mesozoic evolution of NE China[J]. American Journal of Science, 2010, 310(9): 1024-1053. doi: 10.2475/09.2010.10

    CrossRef Google Scholar

    [65] 邵济安, 张履桥, 牟保磊. 大兴安岭中南段中生代的构造热演化[J]. 中国科学(D辑), 1998, (3): 193-200.

    Google Scholar

    [66] 邵济安, 刘福田, 陈辉. 西北太平洋地震层析剖面及地球动力学启示[J]. 自然科学进展, 2000, 10(8): 757-760. doi: 10.3321/j.issn:1002-008X.2000.08.014

    CrossRef Google Scholar

    [67] Deng C Z, Sun D Y, Han J S, et al. Late-stage southwards subduction of the Mongol-Okhotsk oceanic slab and implications for porphyry Cu-Mo mineralization: Constraints from igneous rocks associated with the Fukeshan deposit, NE China[J]. Lithos, 2019, 326/327: 341-357. doi: 10.1016/j.lithos.2018.12.030

    CrossRef Google Scholar

    黑龙江省区域地质调查所. 1:5 万伊洛特河幅、河西厂山幅、老巢山幅区域地质矿产调查报告. 2011.

    Google Scholar

    黑龙江省第五地质勘察院. 1:5 万中腰站幅、卧都河幅区域地质矿产调查报告. 2011.

    Google Scholar

    中国人民武装警察部队黄金第三支队. 1:5 万嘎拉山幅、福草山幅区域地质矿产调查报告. 2009.

    Google Scholar

    吉林大学地质调查研究院. 1:5 万大山幅、上马金厂幅区域地质矿产调查报告.2010.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(3)

Article Metrics

Article views(447) PDF downloads(9) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint