2021 Vol. 40, No. 9
Article Contents

ZHANG Qi, JIAO Shoutao. The great differences between the Archean and modern times: Could there have been plate tectonics in the Archean?[J]. Geological Bulletin of China, 2021, 40(9): 1403-1409.
Citation: ZHANG Qi, JIAO Shoutao. The great differences between the Archean and modern times: Could there have been plate tectonics in the Archean?[J]. Geological Bulletin of China, 2021, 40(9): 1403-1409.

The great differences between the Archean and modern times: Could there have been plate tectonics in the Archean?

  • Most outcropped Archean rocks(such as TTG, komatiite and greenstone belt) are different from the modern ones.Therefore, the idea of "the present is the key to the past" is not suitable to be extended to the Archean Eon, nor can the Archean TTG be compared to the present adakites.TTG had nothing to do with subduction, and might be formed by partial melting of sodium-rich basalts in the initial crust under the tectonic setting of the stagnant lid instead of by crustal thickening.The earth is a process of continuous heat dissipation.The Archean Eon belongs to the hot sphere stage, and the earth might enter the cold sphere stage after the Proterozoic Eon.Therefore, the Archean might be mainly characterized by stagnant lid tectonics, and plate tectonics might have appeared after the Proterozoic.As possibility of plate thermal subduction is small, only when the lithosphere is cold enough and has certain rigidity and buoyancy, can the plate subduction occur.Only by establishing the geological record of plate tectonics(such as ophiolite, blueschist, melanges, deep-sea deposits, etc.) can we know when plate tectonics began.

  • 加载中
  • [1] Salop L I. Two types of Precambrian structures: Gneisses, folded ovals and gneiss domes[J]. Int. Geol. Rev., 1972, 14: 1209-1228. doi: 10.1080/00206817209475823

    CrossRef Google Scholar

    [2] 翟明国. 华北前寒武纪成矿系统与重大地质事件的联系[J]. 岩石学报, 2013, 29(5): 1759-1773.

    Google Scholar

    [3] Martin H. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas[J]. Geology, 1986, 14: 753-756. doi: 10.1130/0091-7613(1986)14<753:EOSAGG>2.0.CO;2

    CrossRef Google Scholar

    [4] Martin H. Adakitic magmas: modern analogues of Archean granitoids[J]. Lithos, 1999, 46: 411-429. doi: 10.1016/S0024-4937(98)00076-0

    CrossRef Google Scholar

    [5] Drummond M S, Defant M J. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparison[J]. Journal of Geophysics Research, 1990, 95: 21503-21521. doi: 10.1029/JB095iB13p21503

    CrossRef Google Scholar

    [6] Foley S, Tiepolo M, Vanucci R. Growth of early continental crust controlled by melting of amphibolite in subduction zones[J]. Nature, 2002, 417: 837-840. doi: 10.1038/nature00799

    CrossRef Google Scholar

    [7] Rapp R P, Shimizu N, Norman M D. Growth of early continental crust by partial melting of eclogite[J]. Nature, 2003, 425: 605-609. doi: 10.1038/nature02031

    CrossRef Google Scholar

    [8] Smithies R H, Champion D C. Adakite, TTG and Archaean crustal evolution[C]//Geophysical Research Abstracts, 2003, 5: 01630.

    Google Scholar

    [9] Steenfelt A, Garde A A, Moyen J F. Mantle wedge involvement in the petrogenesis of Archaean grey gneisses in West Greenland[J]. Lithos, 2005, 79: 207-228. doi: 10.1016/j.lithos.2004.04.054

    CrossRef Google Scholar

    [10] Smithies R H, Champion D C. The Archaean high-Mg dioritesuite: Links to tonalite-trondhjemite-granodiorite magmatism and implications for Early Archaean crustal growth[J]. Journal of Petrology, 2000, 41: 1653-1671. doi: 10.1093/petrology/41.12.1653

    CrossRef Google Scholar

    [11] Condie K C. TTGs and adakites: are they both slab melts?[J]. Lithos, 2005, 80: 33-44. doi: 10.1016/j.lithos.2003.11.001

    CrossRef Google Scholar

    [12] 张旗, 翟明国. 太古宙TTG岩石是什么含义?[J]. 岩石学报, 2012, 28(11): 3446-3456.

    Google Scholar

    [13] Palin R M, Santosh M, Cao W, et al. Secular metamorphic change and the onset of plate tectonics[J]. Earth-Science Reviews, 2020, https://doi.org/10.1016/j.earscirev.2020.103172.

    Google Scholar

    [14] Condie K C, Kröner A. When did plate tectonics begin? Evidence from the geologic record[J]. Geological Society of America, Special Paper, 2008, 440: 281-294.

    Google Scholar

    [15] Rapp R P, Watson E B, Miller C F. Partial melting of amphibolite eclogite and the origin of Archean trondhjemites and tonalites[J]. Precamb. Res., 1991, 51: 1-25. doi: 10.1016/0301-9268(91)90092-O

    CrossRef Google Scholar

    [16] Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36: 891-931. doi: 10.1093/petrology/36.4.891

    CrossRef Google Scholar

    [17] Schmidt M W, Dardon A, Chazot G, et al. The dependence of Nb and Ta rutile-melt composition and Nb/Ta fractionation during subduction processes[J]. Earth Plant. Sci. Lett., 2004, 226: 415-432. doi: 10.1016/j.epsl.2004.08.010

    CrossRef Google Scholar

    [18] Klemme S, Prowatke S, Hametner K, et al. Partitioning of trace elements between rutile and silicate melts: implications for subduction zones[J]. Geochim. Cosmochim. Acta, 2005, 49: 2361-2371.

    Google Scholar

    [19] Xiong X L, Xia B, Xu J F, et al. Na depletion in modern adakites via melt/rock reaction within the sub-arc mantle[J]. Chemical Geology, 2006, 229: 273-292. doi: 10.1016/j.chemgeo.2005.11.008

    CrossRef Google Scholar

    [20] Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subduction lithosphere[J]. Nature, 1990, 347: 662-665. doi: 10.1038/347662a0

    CrossRef Google Scholar

    [21] Smithies R H, Champion D C, van Kranendonk M J. Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt[J]. Earth and Planetary Science Letters, 2009, 281: 298-306. doi: 10.1016/j.epsl.2009.03.003

    CrossRef Google Scholar

    [22] Kusky T M. Accretion of the Archean Slave Province[J]. Geology, 1989, 17: 63-67. doi: 10.1130/0091-7613(1989)017<0063:AOTASP>2.3.CO;2

    CrossRef Google Scholar

    [23] Kusky T M, Polat A. Growth of granite-greenstone terranes at convergent margins, and stabilization of Archean cratons[J]. Tectonophysics, 1999, 305: 43-73. doi: 10.1016/S0040-1951(99)00014-1

    CrossRef Google Scholar

    [24] Kusky T M. 板块构造与地幔温度和变质属性之间的关系[J]. 中国科学: 地球科学, 2020, 50: 635-644.

    Google Scholar

    [25] Komiya T. Material circulation through time: Chemical differentiation within the mantle and secular variation of temperature and composition of the mantle[C]//Yuen D, Maruyama S, Karoto S, et al. Superplumes: Beyond Plate Tectonics. Springer, 2007: 187-234.

    Google Scholar

    [26] Greber N D, Dauphas N, Bekker A, et al. Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago[J]. Science, 2017, 357: 1271-1274. doi: 10.1126/science.aan8086

    CrossRef Google Scholar

    [27] Ge R, Zhu W, Wilde S A, et al. Remnants of Eoarchean continental crust derived from a subducted proto-arc[J]. Science Advances, 2018, 4(2): eaao3159. doi: 10.1126/sciadv.aao3159

    CrossRef Google Scholar

    [28] Deng Z, Chaussidon M, Savage P, et al. Titanium isotopes as a tracer for the plume or island arc affinity of felsic rocks[J]. Proceedings of the National Academy of Sciences, 2019, 01809164.

    Google Scholar

    [29] Dhuime B, Wuestefeld A, Hawkesworth C J. Emergence of modern continental crust about 3 billion years ago[J]. Nature Geoscience, 2015, 8: 552-555. doi: 10.1038/ngeo2466

    CrossRef Google Scholar

    [30] Næraa T, Schersten A, Rosing M T, et al. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago[J]. Nature, 2012, 485: 627-630. doi: 10.1038/nature11140

    CrossRef Google Scholar

    [31] Tang M, Chen K, Rudnick R L. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics[J]. Science, 2016, 351: 372-375. doi: 10.1126/science.aad5513

    CrossRef Google Scholar

    [32] Smit K V, Shirey S B, Hauri E H, et al. Sulfur isotopes in diamonds reveal differences in continent construction[J]. Science, 2019, 364: 383-385.

    Google Scholar

    [33] Zheng Y F, Zhao G. Two Styles of plate tectonics in Earth's history[J]. Science Bulletin, 2020, 65: 329-334. doi: 10.1016/j.scib.2018.12.029

    CrossRef Google Scholar

    [34] Condie K C, O'Neill C, Aster R C. Evidence and implications for a widespread magmatic shutdown for 250 My on Earth[J]. Earth and Planetary Science Letters, 2009, 282: 294-298. doi: 10.1016/j.epsl.2009.03.033

    CrossRef Google Scholar

    [35] Brown M. Metamorphic conditions in orogenic belts: A record of secular change[J]. Int. Geol. Rev., 2007, 49: 193-234. doi: 10.2747/0020-6814.49.3.193

    CrossRef Google Scholar

    [36] Brown M, Johnson T, Gardiner N J. Plate tectonics and the Archean Earth[J]. Annual Reviews of Earth and Planetary Sciences, 2020, 48: 12.1-12.30. doi: 10.1146/annurev-earth-071719-054845

    CrossRef Google Scholar

    [37] Herzberg C, Condie K, Korenaga J. Thermal history of the Earth and its petrological expression[J]. Earth and Planetary Science Letters, 2010, 292: 79-88. doi: 10.1016/j.epsl.2010.01.022

    CrossRef Google Scholar

    [38] Korenaga J. Initiation and evolution of plate tectonics on Earth: theories and observations[J]. Annual Reviewof Earth and Planetary Sciences, 2013, 41: 117-151. doi: 10.1146/annurev-earth-050212-124208

    CrossRef Google Scholar

    [39] Moyen J F, Laurent O. Archaean tectonic systems: A view from igneous rocks[J]. Lithos, 2018, 302/303: 99-125. doi: 10.1016/j.lithos.2017.11.038

    CrossRef Google Scholar

    [40] 张旗, 王焰, 熊小林, 等. 埃达克岩和花岗岩: 挑战与机遇[M]. 北京: 中国大地出版社, 2008.

    Google Scholar

    [41] Lenardic A. The diversity of tectonic modes and thoughts about transitions between them[J]. Phil. Trans. R. Soc. A., 2018, 376: 20170416. doi: 10.1098/rsta.2017.0416

    CrossRef Google Scholar

    [42] Hamilton W B. Archean magmatism and deformation were not products of plate tectonics[J]. Precambrian Research, 1998, 91: 143-179.

    Google Scholar

    [43] Davies G F. On the emergence of plate tectonics[J]. Geology, 1992, 20: 963-966. doi: 10.1130/0091-7613(1992)020<0963:OTEOPT>2.3.CO;2

    CrossRef Google Scholar

    [44] Arndt N T. Formation and evolution of the continental crust[J]. Geochemical Perspectives, 2014, 2(3): 436-504.

    Google Scholar

    [45] Stern R J. 板块构造启动的时间和机制: 理论和经验探索[J]. 科学通报, 2007, 52(5): 489-501. doi: 10.3321/j.issn:0023-074X.2007.05.001

    CrossRef Google Scholar

    [46] Van Hunen J. Onset and evolution of plate tectonics: Geodynamical constraints[J]. Earth Systems and Environmental Sciences, 2019, https://doi.org/10.1016/13978-0-12-409548-9.10861-9.

    Google Scholar

    [47] Zhai M G, Peng P. Origin of early continents and beginning of plate tectonics[J]. Science Bulletin, 2020, 65: 970-973. doi: 10.1016/j.scib.2020.03.022

    CrossRef Google Scholar

    [48] Moyen J F, van Hunen J. Short term episodicity of Archaean subduction[J]. Geology, 2012, 40: 451-454. doi: 10.1130/G322894.1

    CrossRef Google Scholar

    [49] Sleep N H. Evolution of the mode of convection within terrestrial planets[J]. Journal of Geophyical Research: Planets(1991-2012), 2000, 105(E7): 17563-17578. doi: 10.1029/2000JE001240

    CrossRef Google Scholar

    [50] Frisch W, Meschede M, Blakey R. Plate tectonics[M]. Springer, 2011.

    Google Scholar

    [51] 翟明国, 赵磊, 祝禧艳, 等. 早期大陆与板块构造启动——前沿热点介绍与展望[J]. 岩石学报, 2020, 36(8): 2249-2275.

    Google Scholar

    [52] Peacock S M. Thermal structure and metamorphic evolution of subducting slabs[J]. American Geophysical Union, 2003, 138: 7-22.

    Google Scholar

    [53] 赵振华. 地质历史中板块构造启动时间[J]. 大地构造与成矿学, 2017, 41(1): 1-22.

    Google Scholar

    [54] Peltonen P, Kontinen A, Huhma H. Petrology and geochemistry of metabasalts from the 1.95 Ga Jormua ophiolite, northeastern Finland[J]. Journal of Petrology, 1996, 37: 1359-1383.

    Google Scholar

    [55] Scott D J, Helmstaedt H, Bickle M J. Purtuniq ophiolite, Cape Smith belt, northern Quebec, Canada: A reconstructed section of early Proterozoic oceanic crust[J]. Geology, 1992, 20: 173-176.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Article Metrics

Article views(1788) PDF downloads(13) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint