2021 Vol. 40, No. 9
Article Contents

ZENG Xianjin, WANG Ming, FAN Jianjun, LUO Anbo, ZENG Xiaowen, LI Hang, SHEN Di. Lhasa-Qiangtang collision: Constraints from Late Cretaceous red beds in Asa, Tibet[J]. Geological Bulletin of China, 2021, 40(9): 1428-1442.
Citation: ZENG Xianjin, WANG Ming, FAN Jianjun, LUO Anbo, ZENG Xiaowen, LI Hang, SHEN Di. Lhasa-Qiangtang collision: Constraints from Late Cretaceous red beds in Asa, Tibet[J]. Geological Bulletin of China, 2021, 40(9): 1428-1442.

Lhasa-Qiangtang collision: Constraints from Late Cretaceous red beds in Asa, Tibet

More Information
  • The continent-continent collision between Lhasa plate and Qiangtang-Baoshan plate has been a spotlight in the study of Tibetan Plateau's formation and evolution.In Asa area, Late Cretaceous Jingzhushan Formation and Mamole Formation are the most representative deposits in that time.However, the limited research on their ages and sedimentary environment has limited the understanding of the regional tectonic background.This paper reports the studies on the age and sedimentary environment of the Late Cretaceous Jingzhushan Formation in Asa of Tibet.The detrital zircon LA-ICP-MS U-Pb dating results show that the smallest single grain zircon obtained from the Jingzhushan Formation yields age of 89±5 Ma.The diorite dyke intruding into the south part of Jingzhushan Formation gives a zircon U-Pb age of 88 Ma, which further indicates that the sedimentary age of the Jingzhushan Formation in this area should be around 90 Ma.Combined with the research results of the contemporary Mamole Formation in this area, it is suggested that the Jingzhushan Formation was deposited in the alluvial fan environment, while the Mamole Formation in the braided river-delta environment.In terms of sediment sources, the source of Jingzhushan Formation tends to be an island arc provenance under converging environment, while the Mamole Formation has a more complicated source.The Jingzhushan Formation and the Mamole Formation, as the sedimentary response of the Lhasa-Qiangtang plate collision orogeny on the surface, jointly record the crustal uplift process in the Late Cretaceous.

  • 加载中
  • [1] 尹安. 喜马拉雅-青藏高原造山带地质演化——显生宙亚洲大陆生长[J]. 地球学报, 2001, (3): 193-230. doi: 10.3321/j.issn:1006-3021.2001.03.001

    CrossRef Google Scholar

    [2] 许志琴, 杨经绥, 侯增谦, 等. 青藏高原大陆动力学研究若干进展[J]. 中国地质, 2016, 43(1): 5-46.

    Google Scholar

    [3] Murphy M A, Yin A, Harrison T M, et al. Did the Indo-Asian collision alone create the Tibetan plateau?[J]. Geology, 1997, 25(8): 719-722. doi: 10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2

    CrossRef Google Scholar

    [4] Kapp P, Yin A, Harrison T M, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet[J]. Geological Society of America Bulletin, 2005, 117(7): 865. doi: 10.1130/B25595.1

    CrossRef Google Scholar

    [5] Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 119(7/8): 917-933.

    Google Scholar

    [6] DeCelles P G, Kapp P, Ding L, et al. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain[J]. Geological Society of America Bulletin, 2007, 119(5/6): 654-680.

    Google Scholar

    [7] Ding L, Xu Q, Yue Y, et al. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Planetary Science Letters, 2014, 392: 250-264. doi: 10.1016/j.epsl.2014.01.045

    CrossRef Google Scholar

    [8] Wu H, Chen J, Wang Q, et al. Spatial and temporal variations in the geochemistry of Cretaceous high-Sr/Y rocks in Central Tibet[J]. American Journal of Science, 2019, 319: 105-121. doi: 10.2475/02.2019.02

    CrossRef Google Scholar

    [9] Luo A, Wang M, Li C, et al. Petrogenesis of early Late Cretaceous Asa-intrusive rocks in central Tibet, western China: post-collisional partial melting of thickened lower crust[J]. International Journal of Earth Sciences, 2019, 108(6): 1979-1999. doi: 10.1007/s00531-019-01744-4

    CrossRef Google Scholar

    [10] 潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3): 521-533.

    Google Scholar

    [11] Zhu D, Li S, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2016, 245: 7-17. doi: 10.1016/j.lithos.2015.06.023

    CrossRef Google Scholar

    [12] Fan J, Li C, Wang M, et al. Reconstructing in space and time the closure of the middle and western segments of the Bangong-Nujiang Tethyan Ocean in the Tibetan Plateau[J]. International Journal of Earth Sciences, 2018, 107(1): 231-249. doi: 10.1007/s00531-017-1487-4

    CrossRef Google Scholar

    [13] 周亚楠, 邵瑞琦, 姜南, 等. 拉萨地块保吉地区晚侏罗世-早白垩世地层磁组构特征[J]. 地质通报, 2019, 38(4): 522-535.

    Google Scholar

    [14] 夏邦栋, 张开均, 孔庆友. 青藏高原内部三条磨拉石带的确定及其构造意义[J]. 地学前缘, 1999, 6(3): 173-180. doi: 10.3321/j.issn:1005-2321.1999.03.017

    CrossRef Google Scholar

    [15] Kapp P, DeCelles P G, Leier A L, et al. The Gangdese retroarc thrust belt revealed[J]. GSA Today, 2007, 17(7): 4. doi: 10.1130/GSAT01707A.1

    CrossRef Google Scholar

    [16] Leier A L, DeCelles P G, Kapp P, et al. Lower Cretaceous Strata in the Lhasa Terrane, Tibet, with Implications for Understanding the Early Tectonic History of the Tibetan Plateau[J]. Journal of Sedimentary Research, 2007, 77(10): 809-825. doi: 10.2110/jsr.2007.078

    CrossRef Google Scholar

    [17] 西藏自治区地质矿产局. 西藏自治区岩石地层[M]. 武汉: 中国地质大学出版社, 1997.

    Google Scholar

    [18] Lai W, Hu X, Garzanti E, et al. Initial growth of the Northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous(ca. 92 Ma)[J]. Geological Society of America Bulletin, 2019, 131(11/12): 1823-1836.

    Google Scholar

    [19] 贾共祥, 杜凤军, 刘伟. 西藏尼玛一带上白垩统竟柱山组的厘定及其意义[J]. 地质调查与研究, 2007, 30(3): 172-177. doi: 10.3969/j.issn.1672-4135.2007.03.003

    CrossRef Google Scholar

    [20] Li S, Guilmette C, Ding L, et al. Provenance of Mesozoic clastic rocks within the Bangong-Nujiang suture zone, central Tibet: Implications for the age of the initial Lhasa-Qiangtang collision[J]. Journal of Asian Earth Sciences, 2017, 147: 469-484. doi: 10.1016/j.jseaes.2017.08.019

    CrossRef Google Scholar

    [21] 叶加鹏, 胡修棉, 孙高远, 等. 革吉最高海相层约束班怒残留海消亡时间(~94 Ma)[J]. 科学通报, 2019, 64(15): 1620-1636.

    Google Scholar

    [22] 罗安波, 王明, 曾孝文, 等. 藏北尼玛县阿索乡上白垩统马莫勒组的建立及其意义[J]. 地质通报, 2018, 37(8): 1529-1540.

    Google Scholar

    [23] 李华亮, 高成, 李正汉, 等. 西藏班公湖地区竟柱山组时代及其构造意义[J]. 大地构造与成矿学, 2016, 40(4): 663-673.

    Google Scholar

    [24] 和钟铧, 杨德明, 王天武, 等. 西藏比如盆地竟柱山组沉积-火山岩形成环境及构造意义[J]. 沉积与特提斯地质, 2006, (01): 8-12. doi: 10.3969/j.issn.1009-3850.2006.01.002

    CrossRef Google Scholar

    [25] Sun G, Hu X, Sinclair H D, et al. Late Cretaceous evolution of the Coqen Basin(Lhasa terrane) and implications for early topographic growth on the Tibetan Plateau[J]. Geological Society of America Bulletin, 2015, 127(7/8): 1001-1020. .

    Google Scholar

    [26] 黄建国, 马德胜, 龙胜清. 西藏塔惹增地区上白垩统竟柱山组的厘定及其意义[J]. 贵州地质, 2014, 31(3): 206-209+240. doi: 10.3969/j.issn.1000-5943.2014.03.008

    CrossRef Google Scholar

    [27] Wu F, Ji W, Liu C, et al. Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet[J]. Chemical Geology, 2010, 271(1): 13-25.

    Google Scholar

    [28] 黄童童. 班公湖-怒江缝合带中西段晚中生代构造演化的地球化学制约[D]. 中国科学院大学(中国科学院广州地球化学研究所)硕士学位论文, 2017.

    Google Scholar

    [29] 朱弟成, 潘桂棠, 王立全, 等. 西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论[J]. 地质通报, 2008, 27(9): 1535-1550. doi: 10.3969/j.issn.1671-2552.2008.09.013

    CrossRef Google Scholar

    [30] 王立全, 潘桂棠, 朱弟成, 等. 西藏冈底斯带石炭纪-二叠纪岛弧造山作用: 火山岩和地球化学证据[J]. 地质通报, 2008, 27(9): 1509-1534. doi: 10.3969/j.issn.1671-2552.2008.09.012

    CrossRef Google Scholar

    [31] 康志强, 许继峰, 董彦辉, 等. 拉萨地块中北部白垩纪则弄群火山岩: Slainajap洋南向俯冲的产物?[J]. 岩石学报, 2008, 24(2): 303-314.

    Google Scholar

    [32] 朱弟成, 莫宣学, 赵志丹, 等. 西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义[J]. 岩石学报, 2008, 24(3): 401-412.

    Google Scholar

    [33] BouDagher-Fadel M K, Hu X, Price G D, et al. Foraminiferal Biostratigraphy and Palaeoenvironmental Analysis of the Mid-cretaceous Limestones in the Southern Tibetan Plateau[J]. Journal of Foraminiferal Research, 2017, 47(2): 188-207. doi: 10.2113/gsjfr.47.2.188

    CrossRef Google Scholar

    [34] 张泽明, 丁慧霞, 董昕, 等. 冈底斯岩浆弧的形成与演化[J]. 岩石学报, 2019, 35(2): 275-294.

    Google Scholar

    [35] 郑有业, 许荣科, 何来信, 等. 西藏狮泉河蛇绿混杂岩带——一个新的多岛弧盆系统的厘定及意义[J]. 沉积与特提斯地质, 2004, 24(1): 13-20. doi: 10.3969/j.issn.1009-3850.2004.01.002

    CrossRef Google Scholar

    [36] 徐梦婧. 青藏高原狮泉河-永珠-嘉黎蛇绿混杂岩带的构造演化[D]. 吉林大学博士学位论文, 2014.

    Google Scholar

    [37] Zeng X, Wang M, Fan J, et al. Geochemistry and geochronology of gabbros from the Asa Ophiolite, Tibet: Implications for the early Cretaceous evolution of the Meso-Tethys Ocean[J]. Lithos, 2018, 320/321: 192-206. doi: 10.1016/j.lithos.2018.09.013

    CrossRef Google Scholar

    [38] 刘海永, 曾庆高, 王雨, 等. 西藏拉果错蛇绿混杂岩岩石学, 锆石U-Pb年龄及地球化学特征[J]. 地质通报, 2020, 39(2/3): 164-176.

    Google Scholar

    [39] 王伟. 西藏阿索地区早白垩世中酸性侵入岩岩石成因及地质意义[D]. 吉林大学硕士学位论文, 2018.

    Google Scholar

    [40] Liu Y, Wang M, Li C, et al. Late Cretaceous Tectono-Magmatic Activity in the Nize Region, Central Tibet: Evidence for Lithospheric Delamination Beneath the Qiangtang-Lhasa Collision Zone[J]. International Geology Review, 2019, 61(5): 562-583. doi: 10.1080/00206814.2018.1437789

    CrossRef Google Scholar

    [41] Li H, Wang M, Zeng X, et al. Slab break-off origin of 105 Ma A-type porphyritic granites in the Asa area of Tibet[J]. Geological Magazine, 2020, 155(8): 1281-1291.

    Google Scholar

    [42] Gehrels G. Detrital Zircon U-Pb Geochronology Applied to Tectonics[J]. Annual Review of Earth and Planetary Sciences, 2014, 42(1): 127-149. doi: 10.1146/annurev-earth-050212-124012

    CrossRef Google Scholar

    [43] Dickinson W R, Gehrels G E. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 115-125.

    Google Scholar

    [44] Cawood P A, Hawkesworth C J, Dhuime B. Detrital zircon record and tectonic setting[J]. Geology, 2012, 40(10): 875-878. doi: 10.1130/G32945.1

    CrossRef Google Scholar

    [45] Leier A L, Kapp P, Gehrels G, et al. Detrital zircon geochronology of Carboniferous-Cretaceous strata in the Lhasa terrane, Southern Tibet[J]. Basin Research, 2007, 19: 361-378. doi: 10.1111/j.1365-2117.2007.00330.x

    CrossRef Google Scholar

    [46] Ye J, Hu X, Sun G, et al. The disappearance of the Late Cretaceous Bangong-Nujiang residual seaway constrained by youngest marine strata in Geji area, Lhasa Terrane[J]. Chinese Science Bulletin, 2019, 64(15): 1620-1636. doi: 10.1360/N972018-01092

    CrossRef Google Scholar

    [47] Zhu D, Zhao Z, Niu Y, et al. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 2011, 39: 727-730. doi: 10.1130/G31895.1

    CrossRef Google Scholar

    [48] Dong C, Li C, Wan Y, et al. Detrital zircon age model of Ordovician Wenquan quartzite south of Lungmuco-Shuanghu Suture in the Qiangtang area, Tibet: Constraint on tectonic affinity and source regions[J]. Science China Earth Sciences, 2011, 54(7): 1034-1042. doi: 10.1007/s11430-010-4166-x

    CrossRef Google Scholar

    [49] Belousova E, Griffin W, O'Reilly S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7

    CrossRef Google Scholar

    [50] 赵志丹, 刘栋, 王青, 等. 锆石微量元素及其揭示的深部过程[J]. 地学前缘, 2018, 25(6): 124-135.

    Google Scholar

    [51] Hoskin P W O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 2005, 69(3): 637-648. doi: 10.1016/j.gca.2004.07.006

    CrossRef Google Scholar

    [52] Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of Zircon Textures[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 469-500. doi: 10.2113/0530469

    CrossRef Google Scholar

    [53] Grimes C B, Wooden J L, Cheadle M J, et al. "Fingerprinting" tectono-magmatic provenance using trace elements in igneous zircon[J]. Contributions to Mineralogy and Petrology, 2015, 2015, 170(5): 46.

    Google Scholar

    [54] Wang Q, Zhu D, Zhao Z, et al. Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study[J]. Journal of Asian Earth Sciences, 2012, 53: 59-66. doi: 10.1016/j.jseaes.2011.07.027

    CrossRef Google Scholar

    王明.西藏尼则地区 1:5 万区域地质调查报告.吉林大学 2019.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(2439) PDF downloads(36) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint