Citation: | ZENG Xianjin, WANG Ming, FAN Jianjun, LUO Anbo, ZENG Xiaowen, LI Hang, SHEN Di. Lhasa-Qiangtang collision: Constraints from Late Cretaceous red beds in Asa, Tibet[J]. Geological Bulletin of China, 2021, 40(9): 1428-1442. |
The continent-continent collision between Lhasa plate and Qiangtang-Baoshan plate has been a spotlight in the study of Tibetan Plateau's formation and evolution.In Asa area, Late Cretaceous Jingzhushan Formation and Mamole Formation are the most representative deposits in that time.However, the limited research on their ages and sedimentary environment has limited the understanding of the regional tectonic background.This paper reports the studies on the age and sedimentary environment of the Late Cretaceous Jingzhushan Formation in Asa of Tibet.The detrital zircon LA-ICP-MS U-Pb dating results show that the smallest single grain zircon obtained from the Jingzhushan Formation yields age of 89±5 Ma.The diorite dyke intruding into the south part of Jingzhushan Formation gives a zircon U-Pb age of 88 Ma, which further indicates that the sedimentary age of the Jingzhushan Formation in this area should be around 90 Ma.Combined with the research results of the contemporary Mamole Formation in this area, it is suggested that the Jingzhushan Formation was deposited in the alluvial fan environment, while the Mamole Formation in the braided river-delta environment.In terms of sediment sources, the source of Jingzhushan Formation tends to be an island arc provenance under converging environment, while the Mamole Formation has a more complicated source.The Jingzhushan Formation and the Mamole Formation, as the sedimentary response of the Lhasa-Qiangtang plate collision orogeny on the surface, jointly record the crustal uplift process in the Late Cretaceous.
[1] | 尹安. 喜马拉雅-青藏高原造山带地质演化——显生宙亚洲大陆生长[J]. 地球学报, 2001, (3): 193-230. doi: 10.3321/j.issn:1006-3021.2001.03.001 |
[2] | 许志琴, 杨经绥, 侯增谦, 等. 青藏高原大陆动力学研究若干进展[J]. 中国地质, 2016, 43(1): 5-46. |
[3] | Murphy M A, Yin A, Harrison T M, et al. Did the Indo-Asian collision alone create the Tibetan plateau?[J]. Geology, 1997, 25(8): 719-722. doi: 10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2 |
[4] | Kapp P, Yin A, Harrison T M, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet[J]. Geological Society of America Bulletin, 2005, 117(7): 865. doi: 10.1130/B25595.1 |
[5] | Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 119(7/8): 917-933. |
[6] | DeCelles P G, Kapp P, Ding L, et al. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain[J]. Geological Society of America Bulletin, 2007, 119(5/6): 654-680. |
[7] | Ding L, Xu Q, Yue Y, et al. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Planetary Science Letters, 2014, 392: 250-264. doi: 10.1016/j.epsl.2014.01.045 |
[8] | Wu H, Chen J, Wang Q, et al. Spatial and temporal variations in the geochemistry of Cretaceous high-Sr/Y rocks in Central Tibet[J]. American Journal of Science, 2019, 319: 105-121. doi: 10.2475/02.2019.02 |
[9] | Luo A, Wang M, Li C, et al. Petrogenesis of early Late Cretaceous Asa-intrusive rocks in central Tibet, western China: post-collisional partial melting of thickened lower crust[J]. International Journal of Earth Sciences, 2019, 108(6): 1979-1999. doi: 10.1007/s00531-019-01744-4 |
[10] | 潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3): 521-533. |
[11] | Zhu D, Li S, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2016, 245: 7-17. doi: 10.1016/j.lithos.2015.06.023 |
[12] | Fan J, Li C, Wang M, et al. Reconstructing in space and time the closure of the middle and western segments of the Bangong-Nujiang Tethyan Ocean in the Tibetan Plateau[J]. International Journal of Earth Sciences, 2018, 107(1): 231-249. doi: 10.1007/s00531-017-1487-4 |
[13] | 周亚楠, 邵瑞琦, 姜南, 等. 拉萨地块保吉地区晚侏罗世-早白垩世地层磁组构特征[J]. 地质通报, 2019, 38(4): 522-535. |
[14] | 夏邦栋, 张开均, 孔庆友. 青藏高原内部三条磨拉石带的确定及其构造意义[J]. 地学前缘, 1999, 6(3): 173-180. doi: 10.3321/j.issn:1005-2321.1999.03.017 |
[15] | Kapp P, DeCelles P G, Leier A L, et al. The Gangdese retroarc thrust belt revealed[J]. GSA Today, 2007, 17(7): 4. doi: 10.1130/GSAT01707A.1 |
[16] | Leier A L, DeCelles P G, Kapp P, et al. Lower Cretaceous Strata in the Lhasa Terrane, Tibet, with Implications for Understanding the Early Tectonic History of the Tibetan Plateau[J]. Journal of Sedimentary Research, 2007, 77(10): 809-825. doi: 10.2110/jsr.2007.078 |
[17] | 西藏自治区地质矿产局. 西藏自治区岩石地层[M]. 武汉: 中国地质大学出版社, 1997. |
[18] | Lai W, Hu X, Garzanti E, et al. Initial growth of the Northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous(ca. 92 Ma)[J]. Geological Society of America Bulletin, 2019, 131(11/12): 1823-1836. |
[19] | 贾共祥, 杜凤军, 刘伟. 西藏尼玛一带上白垩统竟柱山组的厘定及其意义[J]. 地质调查与研究, 2007, 30(3): 172-177. doi: 10.3969/j.issn.1672-4135.2007.03.003 |
[20] | Li S, Guilmette C, Ding L, et al. Provenance of Mesozoic clastic rocks within the Bangong-Nujiang suture zone, central Tibet: Implications for the age of the initial Lhasa-Qiangtang collision[J]. Journal of Asian Earth Sciences, 2017, 147: 469-484. doi: 10.1016/j.jseaes.2017.08.019 |
[21] | 叶加鹏, 胡修棉, 孙高远, 等. 革吉最高海相层约束班怒残留海消亡时间(~94 Ma)[J]. 科学通报, 2019, 64(15): 1620-1636. |
[22] | 罗安波, 王明, 曾孝文, 等. 藏北尼玛县阿索乡上白垩统马莫勒组的建立及其意义[J]. 地质通报, 2018, 37(8): 1529-1540. |
[23] | 李华亮, 高成, 李正汉, 等. 西藏班公湖地区竟柱山组时代及其构造意义[J]. 大地构造与成矿学, 2016, 40(4): 663-673. |
[24] | 和钟铧, 杨德明, 王天武, 等. 西藏比如盆地竟柱山组沉积-火山岩形成环境及构造意义[J]. 沉积与特提斯地质, 2006, (01): 8-12. doi: 10.3969/j.issn.1009-3850.2006.01.002 |
[25] | Sun G, Hu X, Sinclair H D, et al. Late Cretaceous evolution of the Coqen Basin(Lhasa terrane) and implications for early topographic growth on the Tibetan Plateau[J]. Geological Society of America Bulletin, 2015, 127(7/8): 1001-1020. . |
[26] | 黄建国, 马德胜, 龙胜清. 西藏塔惹增地区上白垩统竟柱山组的厘定及其意义[J]. 贵州地质, 2014, 31(3): 206-209+240. doi: 10.3969/j.issn.1000-5943.2014.03.008 |
[27] | Wu F, Ji W, Liu C, et al. Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet[J]. Chemical Geology, 2010, 271(1): 13-25. |
[28] | 黄童童. 班公湖-怒江缝合带中西段晚中生代构造演化的地球化学制约[D]. 中国科学院大学(中国科学院广州地球化学研究所)硕士学位论文, 2017. |
[29] | 朱弟成, 潘桂棠, 王立全, 等. 西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论[J]. 地质通报, 2008, 27(9): 1535-1550. doi: 10.3969/j.issn.1671-2552.2008.09.013 |
[30] | 王立全, 潘桂棠, 朱弟成, 等. 西藏冈底斯带石炭纪-二叠纪岛弧造山作用: 火山岩和地球化学证据[J]. 地质通报, 2008, 27(9): 1509-1534. doi: 10.3969/j.issn.1671-2552.2008.09.012 |
[31] | 康志强, 许继峰, 董彦辉, 等. 拉萨地块中北部白垩纪则弄群火山岩: Slainajap洋南向俯冲的产物?[J]. 岩石学报, 2008, 24(2): 303-314. |
[32] | 朱弟成, 莫宣学, 赵志丹, 等. 西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义[J]. 岩石学报, 2008, 24(3): 401-412. |
[33] | BouDagher-Fadel M K, Hu X, Price G D, et al. Foraminiferal Biostratigraphy and Palaeoenvironmental Analysis of the Mid-cretaceous Limestones in the Southern Tibetan Plateau[J]. Journal of Foraminiferal Research, 2017, 47(2): 188-207. doi: 10.2113/gsjfr.47.2.188 |
[34] | 张泽明, 丁慧霞, 董昕, 等. 冈底斯岩浆弧的形成与演化[J]. 岩石学报, 2019, 35(2): 275-294. |
[35] | 郑有业, 许荣科, 何来信, 等. 西藏狮泉河蛇绿混杂岩带——一个新的多岛弧盆系统的厘定及意义[J]. 沉积与特提斯地质, 2004, 24(1): 13-20. doi: 10.3969/j.issn.1009-3850.2004.01.002 |
[36] | 徐梦婧. 青藏高原狮泉河-永珠-嘉黎蛇绿混杂岩带的构造演化[D]. 吉林大学博士学位论文, 2014. |
[37] | Zeng X, Wang M, Fan J, et al. Geochemistry and geochronology of gabbros from the Asa Ophiolite, Tibet: Implications for the early Cretaceous evolution of the Meso-Tethys Ocean[J]. Lithos, 2018, 320/321: 192-206. doi: 10.1016/j.lithos.2018.09.013 |
[38] | 刘海永, 曾庆高, 王雨, 等. 西藏拉果错蛇绿混杂岩岩石学, 锆石U-Pb年龄及地球化学特征[J]. 地质通报, 2020, 39(2/3): 164-176. |
[39] | 王伟. 西藏阿索地区早白垩世中酸性侵入岩岩石成因及地质意义[D]. 吉林大学硕士学位论文, 2018. |
[40] | Liu Y, Wang M, Li C, et al. Late Cretaceous Tectono-Magmatic Activity in the Nize Region, Central Tibet: Evidence for Lithospheric Delamination Beneath the Qiangtang-Lhasa Collision Zone[J]. International Geology Review, 2019, 61(5): 562-583. doi: 10.1080/00206814.2018.1437789 |
[41] | Li H, Wang M, Zeng X, et al. Slab break-off origin of 105 Ma A-type porphyritic granites in the Asa area of Tibet[J]. Geological Magazine, 2020, 155(8): 1281-1291. |
[42] | Gehrels G. Detrital Zircon U-Pb Geochronology Applied to Tectonics[J]. Annual Review of Earth and Planetary Sciences, 2014, 42(1): 127-149. doi: 10.1146/annurev-earth-050212-124012 |
[43] | Dickinson W R, Gehrels G E. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 115-125. |
[44] | Cawood P A, Hawkesworth C J, Dhuime B. Detrital zircon record and tectonic setting[J]. Geology, 2012, 40(10): 875-878. doi: 10.1130/G32945.1 |
[45] | Leier A L, Kapp P, Gehrels G, et al. Detrital zircon geochronology of Carboniferous-Cretaceous strata in the Lhasa terrane, Southern Tibet[J]. Basin Research, 2007, 19: 361-378. doi: 10.1111/j.1365-2117.2007.00330.x |
[46] | Ye J, Hu X, Sun G, et al. The disappearance of the Late Cretaceous Bangong-Nujiang residual seaway constrained by youngest marine strata in Geji area, Lhasa Terrane[J]. Chinese Science Bulletin, 2019, 64(15): 1620-1636. doi: 10.1360/N972018-01092 |
[47] | Zhu D, Zhao Z, Niu Y, et al. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 2011, 39: 727-730. doi: 10.1130/G31895.1 |
[48] | Dong C, Li C, Wan Y, et al. Detrital zircon age model of Ordovician Wenquan quartzite south of Lungmuco-Shuanghu Suture in the Qiangtang area, Tibet: Constraint on tectonic affinity and source regions[J]. Science China Earth Sciences, 2011, 54(7): 1034-1042. doi: 10.1007/s11430-010-4166-x |
[49] | Belousova E, Griffin W, O'Reilly S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7 |
[50] | 赵志丹, 刘栋, 王青, 等. 锆石微量元素及其揭示的深部过程[J]. 地学前缘, 2018, 25(6): 124-135. |
[51] | Hoskin P W O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 2005, 69(3): 637-648. doi: 10.1016/j.gca.2004.07.006 |
[52] | Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of Zircon Textures[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 469-500. doi: 10.2113/0530469 |
[53] | Grimes C B, Wooden J L, Cheadle M J, et al. "Fingerprinting" tectono-magmatic provenance using trace elements in igneous zircon[J]. Contributions to Mineralogy and Petrology, 2015, 2015, 170(5): 46. |
[54] | Wang Q, Zhu D, Zhao Z, et al. Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study[J]. Journal of Asian Earth Sciences, 2012, 53: 59-66. doi: 10.1016/j.jseaes.2011.07.027 |
① | 王明.西藏尼则地区 1:5 万区域地质调查报告.吉林大学 2019. |
Plate tectonic framework of the Lhasa block(a)and geological map of the Asa area, Nima County, Tibet(b)
Simplified cross-section of the Jingzhushan Formation in Shangale, Asa area
Stratigraphic column of the Jingzhushan Formation and Mamole Formation in the Asa area
Cathodoluminescence images with analytical spots and corresponding apparent ages of detrital zircons of the Jingzhushan Formation(a), U-Pb concordia plots of detrital zircons from the Jingzhushan Formation sample(b), probability plots and kernel functional plots(c) of the Jingzhushan Formation and Mamole Formation
Contrastration of detrital zricon dating data from different areas in Lhasa block
Discriminants bretween magmatic and hydrothermal genatic zircons(a), discrimination diagram of zircon protorock types(b), discrimination diagram of tectonic setting of zircon protolites(c)and trace element plots for zircons from I-, S-, and A-type granites(d)
Tectonic classification diagram of detrital zircon ages