2021 Vol. 40, No. 9
Article Contents

LIU Xin, YAN Jianming, WU Shaokui, WAN Limin, YE Huishou. Wall rock alteration and trace elements of pyrite in Qiyugou No.189 porphyry gold deposit in western Henan Province and their constraints on metallogenic process[J]. Geological Bulletin of China, 2021, 40(9): 1530-1546.
Citation: LIU Xin, YAN Jianming, WU Shaokui, WAN Limin, YE Huishou. Wall rock alteration and trace elements of pyrite in Qiyugou No.189 porphyry gold deposit in western Henan Province and their constraints on metallogenic process[J]. Geological Bulletin of China, 2021, 40(9): 1530-1546.

Wall rock alteration and trace elements of pyrite in Qiyugou No.189 porphyry gold deposit in western Henan Province and their constraints on metallogenic process

More Information
  • The Qiyugou No.189 gold deposit in western Henan is a medium-sized one newly discovered in the Xiong'ershan ore-concentrated area on the southern margin of the North China Block in recent years.The gold orebodies are hosted in the Early Cretaceous hornblende monzonitic granite.The upper part is veinlet disseminated gold mineralization, and the lower part is hydrothermally mineralized Au-bearing breccia, which shows porphyry mineralization characteristics.Although predecessors carried out research work, there are still big controversies about the alteration zonation and mineralization process of the deposit.Based on the field investigation and analysis of alteration zonation, micro-area analysis technology was used to test and study the main-trace elements and sulfur isotopic compositions of pyrite in different alteration zones.The wall rock alteration zonation is characterized by potassium feldspar zone-sericitization zone-propylitization zone from the center to the periphery of the orebody.Gold mainly occurs in the form of fissure gold, intergranular gold and inclusion gold in pyrite and other sulfide, and the content of invisible gold is low.From the potassic zone, through the phyllic zone, to the propylitic alteration zone, the contents of Ag and Bi tend to increase, while the contents of As, Sb, Zn, Mn, Mo and Sn, etc.show no obvious changes.The in-situ sulfur isotope composition indicates that the ore-forming material originates from deep magma.The analysis of its metallogenic process indicates that complexes and Te-Bi melts play an important role in the migration and enrichment of gold.

  • 加载中
  • [1] 侯增谦, 杨志明. 中国大陆环境斑岩型矿床: 基本地质特征、岩浆热液系统和成矿概念模型[J]. 地质学报, 2009, 83(12): 1779-1816. doi: 10.3321/j.issn:0001-5717.2009.12.002

    CrossRef Google Scholar

    [2] Hou Z Q, Ma H W, Zaw K. The Himalayan Yulong Porphyry Copper Belt: product of large-scale strike-slip faulting in Eastern Tibet[J]. Economic Geology, 2003, 98(1): 125-145.

    Google Scholar

    [3] Richards J P. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere[J]. Geology, 2009, 37(3): 247-250. doi: 10.1130/G25451A.1

    CrossRef Google Scholar

    [4] Richards J P. Magmatic to hydrothermal metal fluxes in convergent and collided margins[J]. Ore Geology Reviews, 2011, 40(1): 1-26. doi: 10.1016/j.oregeorev.2011.05.006

    CrossRef Google Scholar

    [5] 万利敏, 陈冰丽. 祁雨沟次火山斑岩型金矿床成矿系统分析及找矿意义[J]. 黄金, 2017, 38(2): 24-29.

    Google Scholar

    [6] Qi N, Wang P, Yu J, et al. Geochronology and origin of the Qi189 porphyry gold deposit in Qiyugou orefield, Qinling orogen, china[J]. Ore Geology Reviews, 2019, 114: 103121. doi: 10.1016/j.oregeorev.2019.103121

    CrossRef Google Scholar

    [7] Wang P, Mao J W, Ye H S, et al. The Qiyugou Au orefield—An intrusion-related gold system in the Eastern Qinling ore belt, China: Constraints from SIMS zircon U-Pb, molybdenite Re-Os, sericite 40Ar-39Ar geochronology, in-situ S-Pb isotopes, and mineralogy[J]. Ore Geology Reviews, 2020, 124: 103636. doi: 10.1016/j.oregeorev.2020.103636

    CrossRef Google Scholar

    [8] Tang L, Zhao Y, Zhang S T, et al. Origin and evolution of a porphyry-breccia system: evidence from zircon U-Pb, molybdenite Re-Os geochronology, in situ sulfur isotope and trace elements of the Qiyugou deposit, china[J]. Gondwana Research, 2020, 89: 88-104.

    Google Scholar

    [9] Belinda F, Rune B L, Andreas G, et al. In situ ananlysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry[J]. Chemical Geology, 2002, 182(2/4): 237-247.

    Google Scholar

    [10] 周涛发, 张乐骏, 袁峰, 等. 安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约[J]. 地学前缘, 2010, 17(2): 306-319.

    Google Scholar

    [11] 范宏瑞, 李兴辉, 左亚彬, 等. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程[J]. 岩石学报, 2018, 34(12): 3479-3496.

    Google Scholar

    [12] Gaspar M, Knaack C, Meinert L D, et al. REE in skarn systems: A LA-ICP-MS study of garnets from the Crown Jewel gold deposit[J]. Geochimica et Cosmochimica Acta, 2008, 72(1): 185-205. doi: 10.1016/j.gca.2007.09.033

    CrossRef Google Scholar

    [13] Deol S, Deb M, Large R R, et al. LA-ICPMS and EPMA studies of pyrite, arsenopyrite and loellingite from the Bhukia-Jagpura gold prospect, southern Rajasthan, India: Implications for ore genesis and gold remobilization[J]. Chemical Geology, 2012, 326/327: 72-87.

    Google Scholar

    [14] 郭保健, 李永峰, 王志光, 等. 熊耳山Au-Ag-Pb-Mo矿集区成矿模式与找矿方向[J]. 地质与勘探, 2005, (5): 43-47. doi: 10.3969/j.issn.0495-5331.2005.05.009

    CrossRef Google Scholar

    [15] 石铨曾, 秦国群, 李明立, 等. 豫西后造山阶段的剥离伸展构造与金矿化[J]. 河南地质, 1993, (1): 28-36, 81.

    Google Scholar

    [16] 张进江, 郑亚东, 刘树文. 小秦岭金矿田中生代构造演化与矿床形成[J]. 地质科学, 2003, (1): 74-84.

    Google Scholar

    [17] 李永峰, 毛景文, 胡华斌, 等. 豫西公峪金矿床流体包裹体及其He、Ar、S、H、O同位素组成对成矿流体来源的示踪[J]. 岩石学报, 2005, (5): 1347-1358.

    Google Scholar

    [18] 毛景文, 谢桂青, 张作衡, 等. 中国北方中生代大规模成矿作用的期次及其地球动力学背景[J]. 岩石学报, 2005, (1): 171-190.

    Google Scholar

    [19] 王义天, 毛景文, 卢欣祥. 嵩县祁雨沟金矿成矿时代的40Ar-39Ar年代学证据[J]. 地质论评, 2001, (5): 551-555. doi: 10.3321/j.issn:0371-5736.2001.05.015

    CrossRef Google Scholar

    [20] Han Y, Li X, Zhang S, et al. Single grain Rb-Sr dating of euhedral and cataclastic pyrite from the Qiyugou gold deposit in western Henan, central China[J]. Chinese Science Bulletin, 2007, 52(13): 1820-1826. doi: 10.1007/s11434-007-0248-3

    CrossRef Google Scholar

    [21] 唐克非. 华北克拉通南缘熊耳山地区金矿床时空演化、矿床成因及成矿构造背景[D]. 中国地质大学(武汉)博士学位论文, 2014.

    Google Scholar

    [22] 张兴康, 叶会寿, 颜正信, 等. 豫西吉家洼金矿床成矿时代和成矿物质来源: 来自闪锌矿Rb-Sr同位素年龄和Pb同位素的证据[J]. 地质学报, 2018, 92(5): 1003-1018. doi: 10.3969/j.issn.0001-5717.2018.05.008

    CrossRef Google Scholar

    [23] 陈衍景, 唐国军, Franco Pirajno, 等. 东秦岭上宫金矿流体成矿作用: 放射成因同位素地球化学研究[J]. 矿物岩石, 2004, (3): 22-27. doi: 10.3969/j.issn.1001-6872.2004.03.003

    CrossRef Google Scholar

    [24] 张苏坤, 史保堂, 汪江河, 等. 豫西熊耳山吉家洼金矿床同位素特征与成矿模式[J]. 矿产勘查, 2016, 7(4): 552-560. doi: 10.3969/j.issn.1674-7801.2016.04.006

    CrossRef Google Scholar

    [25] 抄尉尉, 叶会寿, 田野, 等. 豫西熊耳山矿集区栾灵金矿床辉钼矿Re-Os同位素年龄及其地质意义[J]. 矿床地质, 2016, 35(1): 103-116.

    Google Scholar

    [26] 曾涛, 唐利, 黄丹峰, 等. 豫西熊耳山矿集区祁雨沟斑岩型金矿床地质特征及找矿意义[J]. 黄金, 2019, 40(10): 4-9. doi: 10.11792/hj20191002

    CrossRef Google Scholar

    [27] Deng J, Gong Q, Wang C, et al. Sequence of Late Jurassic-Early Cretaceous magmatic-hydrothermal events in the Xiong'ershan region, Central China: An overview with new zircon U-Pb geochronology data on quartz porphyries[J]. Journal of Asian Earth Sciences, 2014, 79(pt. A): 161-172.

    Google Scholar

    [28] Zhai D G, Williams-Jones A E, Liu J J, et al. Mineralogical, fluid inclusion, and multiple isotope(H-O-S-Pb)constraints on the genesis of the Sandaowanzi epithermal Au-Ag-Te deposit, NE China[J]. Economic Geology, 2018, 113(6): 1359-1382. doi: 10.5382/econgeo.2018.4595

    CrossRef Google Scholar

    [29] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.

    Google Scholar

    [30] Crowe D E, Vaughan R G. Characterization and use of isotopically homogeneous standards for in situ laser microprobe analysis of 34S/32S ratios[J]. American Mineralogist, 1996, 81(1/2): 187-193.

    Google Scholar

    [31] 严育通, 李胜荣, 贾宝剑, 等. 中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析[J]. 地学前缘, 2012, 19(4): 214-226.

    Google Scholar

    [32] 冷成彪. 滇西北红山铜多金属矿床的成因类型: 黄铁矿和磁黄铁矿LA-ICPMS微量元素制约[J]. 地学前缘, 2017, 24(6): 162-175.

    Google Scholar

    [33] Cook N J, Ciobanu C L, Mao J W. Textural control on gold distribution in As freepyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton(Hebei Province, China)[J]. Chemical Geology, 2009, 264(1/4): 101-121

    Google Scholar

    [34] 王岚, 杨理勤, 王亚平, 等. 激光剥蚀电感耦合等离子体质谱微区分析进展评述[J]. 地质通报, 2012, 31(4): 637-645. doi: 10.3969/j.issn.1671-2552.2012.04.020

    CrossRef Google Scholar

    [35] Ohmoto H, Rye R O. Isotopes of sulfur and carbon[C]//Barnes H L. Geochemistry of hydrothermal ore deposits. 2nd ed. New York : John Wiley & Sons. 1979, 509-567.

    Google Scholar

    [36] 王鹏. 熊耳山祁雨沟矿田燕山期岩浆活动与金成矿作用[D]. 中国地质大学(北京)博士学位论文, 2020.

    Google Scholar

    [37] 邵克忠, 王宝德, 吴新国, 等. 祁雨沟地区爆发角砾岩型金矿成矿地质条件及找矿方向研究[J]. 河北地质学院学报, 1992, (2): 105-195.

    Google Scholar

    [38] 范宏瑞, 谢奕汉, 赵瑞, 等. 豫西熊耳山地区岩石和金矿床稳定同位素地球化学研究[J]. 地质找矿论丛, 1994, 9(1): 54-64.

    Google Scholar

    [39] 陈旺. 豫西熊耳山金矿床和银(铅)矿床铅同位素研究[J]. 贵金属地质, 1995, 4(3): 168-76.

    Google Scholar

    [40] Xiong S F, Jiang S Y, Zhao K D, et al. Gold distribution and source of the J4 gold-bearing breccia pipe in the. Qiyugou district, North China Craton: Constraints from ore mineralogy and in situ analysis of trace elements and S-Pb isotopes[J]. Ore Geology Reviews, 2019, 105: 514-536. doi: 10.1016/j.oregeorev.2018.12.022

    CrossRef Google Scholar

    [41] 李英和, 仁崔锁. 华北地台南缘铅同位素演化[J]. 西安地质学院学报, 1990, 12(2): 1-11.

    Google Scholar

    [42] Wang C, Lu Y, He X, et al. The Paleoproterozoic diorite dykes in the southern margin of the North China Craton: Insight into rift-related magmatism[J]. Precambrian Research, 2016, 277: 26-46. doi: 10.1016/j.precamres.2016.02.009

    CrossRef Google Scholar

    [43] Wang C, He X, Carranza E J M, et al. Paleoproterozoic volcanic rocks in the southern margin of the North China Craton, central China: Implications for the Columbia supercontinent[J]. Geoscience Frontiers, 2019, 10(4): 1543-1560. doi: 10.1016/j.gsf.2018.10.007

    CrossRef Google Scholar

    [44] Loftus-Hills G, Solomon M. Cobalt, nickel and selenium in sulphides as indicators of ore genesis[J]. Mineralium Deposita, 1967, 2(3): 228-242.

    Google Scholar

    [45] Bralia A, Sabatini G, Troja F. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems[J]. Mineralium Deposita, 1979, 14(3): 353-374.

    Google Scholar

    [46] Bajwah Z U, Seccombe P K, Offler R. Trace element distribution, Co: Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia[J]. Mineralium Deposita, 1987, 22(4): 292-300.

    Google Scholar

    [47] 齐楠, 王玭, 陈衍景, 等. 河南祁雨沟金矿田189号矿床流体包裹体与矿床成因研究[J]. 大地构造与成矿学, 2019, 43(3): 558-574.

    Google Scholar

    [48] Jian W, Mao J W, Lehmann B, et al. Au-Ag-Te-rich melt inclusions in hydrothermal gold-quartz veins, Xiaoqinling lode gold district, central China[J]. Economic Geology, 2021, 116(5): 1239-1248. doi: 10.5382/econgeo.4811

    CrossRef Google Scholar

    姚书振. 河南省嵩县祁雨沟金矿床成矿规律研究报告. 武汉: 中国地质大学, 2012.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(1856) PDF downloads(27) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint