Institute of Hydrogeology and Environmental Geology,
Chinese Academy of Geological Sciences
Host
Groundwater Science and Engineering LimitedPublish
2021 Vol. 9, No. 2
Article Contents

Xi Yu-fei, Zhao Ya-bo, DA Yuen. 2021. Geothermal structure revealed by curie isothermal surface under Guangdong Province, China. Journal of Groundwater Science and Engineering, 9(2): 114-120. doi: 10.19637/j.cnki.2305-7068.2021.02.003
Citation: Xi Yu-fei, Zhao Ya-bo, DA Yuen. 2021. Geothermal structure revealed by curie isothermal surface under Guangdong Province, China. Journal of Groundwater Science and Engineering, 9(2): 114-120. doi: 10.19637/j.cnki.2305-7068.2021.02.003

Geothermal structure revealed by curie isothermal surface under Guangdong Province, China

More Information
  • Guangdong Province in Southeast China is noted for its numerous geothermal resources due to tectonic episodes, mainly occurred during the Cretaceous. The surface heat flow and geothermal gradient are the most direct ways to understand the temperature of the Earth. However, geothermal resources are poorly utilized in Guangdong Province due to limited numbers of boreholes and surficial hydrothermal fluids. To improve the understanding of underground temperature distribution in Guangdong Province, we have applied power-density spectral analysis to aeromagnetic anomaly data to calculate the depth of the Curie isothermal surface. Upward continuation is applied and tested to the magnetic data. The calculated Curie isotherm is between 18.5 km and 25 km below surface. The fluctuation in the depth range reflects lateral thermal perturbations in the Guangdong crust. In particular, the eastern, northern, western and coastline areas of the province have a relatively shallow Curie isotherm. By comparing the surface heat flow, geothermal gradient, distribution of Mesozoic granite-volcanic rocks, and natural hot springs, we conclude that during Mesozoic, magmatism exerted great influence on the deep thermal state of Guangdong Province. A shallow Curie isotherm surface, as well as numerous natural hot springs and high heat flow, show clear signatures of shallow heat sources.

  • 加载中
  • [1] An MJ, Shi YL. 2006. Lithospheric thickness of the Chinese continent. Physics of the Earth and Planetary Interiors, 159(3-4): 257-266. doi: 10.1016/j.pepi.2006.08.002

    CrossRef Google Scholar

    [2] Artemieva IM, Mooney WD. 2001. Thermal thickness and evolution of Precambrian lithosphere: A global study. Journal of Geophysical Research, 106(B8): 16387-16414. doi: 10.1029/2000JB900439

    CrossRef Google Scholar

    [3] Bektaş Ö. 2013. Thermal structure of the crust in Inner East Anatolia from aeromagnetic and gravity data. Physics of the Earth and Planetary Interiors, 221: 27-37. doi: 10.1016/j.pepi.2013.06.003

    CrossRef Google Scholar

    [4] Blakely RJ. 1995. Potential theory in gravity and magnetic applications. New York: Cambridge University Press.

    Google Scholar

    [5] Dimitriadis K, Tselentis GA, Thanassoulas K. 1987. A BASIC program for 2-D spectral analysis of gravity data and source-depth estimation. Computers & Geosciences, 13(5): 549-560. doi: 10.1016/0098-3004(87)90056-2

    CrossRef Google Scholar

    [6] Farr TG, Rosen PA, Caro E, et al. 2007. The shuttle radar topography mission. Reviews of geophysics, 45(2): 1-33. doi: 10.1029/2005RG000183

    CrossRef Google Scholar

    [7] Hu SB, He LJ, Wang JY. 2001. Compilation of heat flow data in the China continental area(3rd edition). Chinese Journal of Geophysics, 44(5): 604-618. (in Chinese) doi: 10.1002/cjg2.180

    CrossRef Google Scholar

    [8] Hu XZ, Xu MJ, Xie XA, et al. 2006. A characteristic analysis of aeromagnetic anomalies and Curie point isotherms in Northeast China. Chinese Journal of Geophysics, 49(6): 1674-1681. (in Chinese)

    Google Scholar

    [9] Kittel C. 1996. Introduction to solid state physics. New York: John Wiley & Sons Inc.

    Google Scholar

    [10] Li C, Van Der Hilst RD. 2010. Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography. Journal of Geophysical Research, 115(B7). doi: 10.1029/2009jb006882

    CrossRef Google Scholar

    [11] Lysak S. 2009. Thermal history, geodynamics, and current thermal activity of lithosphere in China. Russian Geology and Geophysics, 50(9): 815-825. doi: 10.1016/j.rgg.2009.08.007

    CrossRef Google Scholar

    [12] Nwogbo PO. 1998. Spectral prediction of magnetic source depths from simple numerical models. Computers & Geosciences, 24(9): 847-852. doi: 10.1016/S0098-3004(97)00131-3

    CrossRef Google Scholar

    [13] Okubo Y, Matsushima J, Correia A. 2003. Magnetic spectral analysis in Portugal and its adjacent seas. Physics and Chemistry of the Earth, Parts A/B/C, 28(9-11): 511-519. doi: 10.1016/S1474-7065(03)00070-6

    CrossRef Google Scholar

    [14] Quenette S, Xi YF, Mansour J, et al. 2015. Underworld-GT applied to Guangdong, a tool to explore the geothermal potential of the crust. Journal of Earth Science, 26(1): 78-88. doi: 10.1007/s12583-015-0517-z

    CrossRef Google Scholar

    [15] Ross HE, Blakely RJ, Zoback MD. 2006. Testing the use of aeromagnetic data for the determination of Curie depth in California. Geophysics, 71(5): L51-L59. doi: 10.1190/1.2335572

    CrossRef Google Scholar

    [16] Rudnick RL, McDonough WF, O'Connell RJ. 1998. Thermal structure, thickness and composition of continental lithosphere. Chemical Geology, 145(3-4): 395-411. doi: 10.1016/S0009-2541(97)00151-4

    CrossRef Google Scholar

    [17] Spector A, Grant F. 1970. Statistical models for interpreting aeromagnetic data. Geophysics, 35(2): 293-302. doi: 10.1190/1.1440092

    CrossRef Google Scholar

    [18] Sun YJ, Dong SW, Zhang H, et al. 2013. 3D thermal structure of the continental lithosphere beneath China and adjacent regions. Journal of Asian Earth Sciences, 62: 697-704. doi: 10.1016/j.jseaes.2012.11.020

    CrossRef Google Scholar

    [19] Tanaka A, Okubo Y, Matsubayashi O. 1999. Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics, 306(3): 461-470. doi: 10.1016/S0040-1951(99)00072-4

    CrossRef Google Scholar

    [20] Turcotte DL, Schubert G. 2014. Geodynamics, 3rd edition. New York: Cambridge University Press.

    Google Scholar

    [21] Vitorello I, Pollack HN. 1980. On the variation of continental heat flow with age and the thermal evolution of continents. Journal of Geophysical Research: Solid Earth, 85(B2): 983-995. doi: 10.1029/JB085iB02p00983

    CrossRef Google Scholar

    [22] Wan TF. 2011. The tectonics of China: Data, maps and evolution. Beijing, Dordercht Heidelberg, London and New York: Springer and Higher Education.

    Google Scholar

    [23] Wang H, Mao X, Wang T, et al. 2019. Hydrogeochemical characteristics of hot springs exposed from fault zones in western Guangdong and their 14C age correction. Journal of Groundwater Science and Engineering, 7(1): 1-14. doi: 10.19637/j.cnki.2305-7068.2019.01.001

    CrossRef Google Scholar

    [24] Wang JY, Huang SP. 1990. Compilation of heat flow data in the China continental area(2nd Edition). Seismology and Geology, 12(4): 351-366. (in Chinese)

    Google Scholar

    [25] Wu ZC, Gao JY, Zhao LH, et al. 2010. Characteristic of magnetic anomalies and curie point depth at northern continental margin of the South China Sea. Earth Science-Journal of China University of Geosciences, 35(6): 1060-1068. (in Chinese) doi: 10.3799/dqkx.2010.120

    CrossRef Google Scholar

    [26] Xi YF, Wang GL, Liu S, et al. 2018. The formation of a geothermal anomaly and extensional structures in Guangdong, China: Evidence from gravity analyses. Geothermics, 72: 225-231. doi: 10.1016/j.geothermics.2017.11.009

    CrossRef Google Scholar

    [27] Yuan YS, Ma YS, Hu SB, et al. 2006. Present-day geothermal characteristics in South China. Chinese Journal of Geophysics, 49(4): 1118-1126. (in Chinese)

    Google Scholar

    [28] Zhang Y, Luo J, Feng J. 2020. Characteristics of geothermal reservoirs and utilization of geothermal resources in the southeastern coastal areas of China. Journal of Groundwater Science and Engineering, 8(2): 134-142. doi: 10.19637/j.cnki.2305-7068.2020.02.005

    CrossRef Google Scholar

    [29] Zhang ZJ, Xu T, Zhao B, et al. 2013. Systematic variations in seismic velocity and reflection in the crust of Cathaysia: New constraints on intraplate orogeny in the South China continent. Gondwana Research, 24(3-4): 902-917. doi: 10.1016/j.gr.2012.05.018

    CrossRef Google Scholar

    [30] Zhao JF, Shi XB, Qiu XL, et al. 2010. Characteristics and petroleum geological significance of Curie point isotherm in the northeastern South China Sea. Journal of tropical oceanography, 29(1): 126-131. (in Chinese) doi: 10.11978/j.issn.1009-5470.2010.01.126

    CrossRef Google Scholar

    [31] Zhao P. 1995. Studies of the relationship between seismic velocity and heat production in the rocks of crust. Progress in Geophysics, 10(1): 292-305. (in Chinese)

    Google Scholar

    [32] Zhou XM, Sun T, Shen WZ, et al. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1): 26-33. doi: 10.18814/epiiugs/2006/v29i1/004

    CrossRef Google Scholar

    [33] Zhou ZM, Ma CQ, Qi SH, et al. 2020. Late Mesozoic high-heat-producing (HHP) and high-temperature geothermal reservoir granitoids: The most significant geothermal mechanism in South China. Lithos, 366-367: 105568. doi: 10.1016/j.lithos.2020.105568

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(745) PDF downloads(21) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint