2007 Vol. 13, No. 1
Article Contents

LI Dong-xu. 3D MODEL OF REVERSED S-SHAPED OROGENIC BELTS ON THE CONTINENTAL MARGIN : WITH A DISCUSSION OF THE INTERNAL STRUCTURE AND UPLIFT OF THE QINGHAI-TIBET PLATEAU[J]. Journal of Geomechanics, 2007, 13(1): 31-41.
Citation: LI Dong-xu. 3D MODEL OF REVERSED S-SHAPED OROGENIC BELTS ON THE CONTINENTAL MARGIN : WITH A DISCUSSION OF THE INTERNAL STRUCTURE AND UPLIFT OF THE QINGHAI-TIBET PLATEAU[J]. Journal of Geomechanics, 2007, 13(1): 31-41.

3D MODEL OF REVERSED S-SHAPED OROGENIC BELTS ON THE CONTINENTAL MARGIN : WITH A DISCUSSION OF THE INTERNAL STRUCTURE AND UPLIFT OF THE QINGHAI-TIBET PLATEAU

  • According to the tectono-geomorphological features and characteristics of neotectonic movement on the southwestern margin of the North American continent, the author has established a 3D tectonomechanic model of the reversed S-shaped continental-margin orogenic belt of the northern hemisphere. This zigzag orogenic belt extends from Alaska through the Cordillera to the Caribbean and may be divided into three sections :(1)the Alaska region, which, as a head arc, is an arcuate dextral shear uplifted orogenic belt; (2)the Cordillera orogenic belt, which as a middle section, is a straight dextral strike-slip orogenic belt; and(3)the region from south of the Madre Mountains to the Caribbean Sea, which, as a tail arc, is a sinistral transrotational " trench-arc-basin system". The author used this model to check the orogenic belts on the southern margin of the Eurasian continent and ascertained that the zigzag mountain chain from the Alps through Zagros and Himalaya to Indonesia is composed of four connected reversed S-shaped orogenic belts. The cause for their decomposition into four separate tectonic systems is related to the breakup of the supercontinent Gondwana in the southern hemisphere. According to the above-mentioned regional tectonic characteristics, the author thinks that the original internal structure of the Qinghai-Tibet Plateau was a transrotational trench-arc-basin system, belonging to the tail arc of the Pamir-Karakorum-Himalaya reversed S-shaped orogenic belt.Later it underwent the superimposition of two dynamic systems, the subduction of the Indian plate and the dextral shear and uplift of the head arc of the Qinghai-Tibet-Sanjiang-Indonesia reversed S-shaped orogenic belt.

  • 加载中
  • [1] 李四光.旋卷构造及其他有关中国西北部大地构造体系复合问题[J].地质学报, 1954, 34(4).

    Google Scholar

    [2] 李四光.地球表面形象变迁之主因[J].中国地质学会志, 1926, 6(3~4):209~262.

    Google Scholar

    [3] Lee JS.Some characteristic structural types in eastern Asia and their bearing upon the problem of continental movements[J]. Geological Magazines, 1929, 66(8, 9, 10).

    Google Scholar

    [4] 李四光.地壳构造与地壳运动《天文、地质、古生物》资料摘要(初稿)[M].1972, 科学出版社.

    Google Scholar

    [5] 李东旭.旋扭构造动力学[M]:北京, 地质出版社, 2003, 188~205.

    Google Scholar

    [6] King Ph B.New Tectonic Map of North America, 1: 5000000.GSA Bulletin., 1969.

    Google Scholar

    [7] Ratchkovski NA.Wiemer S, Hansen RA.Seism tectonics of the Central Denali fault, Alaska and the 2002 Denali fault earthquake sequence[J].Bull.Seis.Soc.Am.6B, 2004 S156~S174.

    Google Scholar

    [8] Fisher MA, Harris RA, Nokleberg WJ, Pelerine L, Glen JM.Geophysical data reveal the crustal structure of the Alaska Range orogen within the aftershock zone of the M=7.9 Denali Fault earthquake.Bull.Seis.Soc.Am.B6, 2004, S107~S131.

    Google Scholar

    [9] Martirosyan A, Ansen RH, Ratchkovski N.Strong-motion records of the 2002 Denali Fault, Alaska earthquake[J].Earthquake Spectra, 2004, 20, 579~596. doi: 10.1193/1.1777237

    CrossRef Google Scholar

    [10] Hansen RA, Ratchkovski NA.Seismological aspects of the 2002 Denali Fault, Alaska earthquake[J].Earthquake Spectra, 2004, 20, 555~563. doi: 10.1193/1.1777236

    CrossRef Google Scholar

    [11] Lanphere MA, Reed BL.The M cKinley sequence of granitic rocks:a key element in the accretionary history of southern Alaska (USA)[J].Jour Geophy Res, 1985, 90, B13:11413~11430. doi: 10.1029/JB090iB13p11413

    CrossRef Google Scholar

    [12] Platker G., Nasser CW, Zimmerman RA et al.Cenozoic uplift history of the Mount McKinley area in the central Alaska Range based on fission-trace dating[J].US Geol Sur Bull, 1992, 2041:202~212.

    Google Scholar

    [13] Avelallemant HG. Arc-parallel displacement within the western Aleutian Island, Alaska: Preliminary GPS results[A]. In: Geological Society of America, Century of the Pacific Rim[C]. 1999, 31(6), A~35.

    Google Scholar

    [14] Haussler P, Mueller J F, Moran S, Power J, Saltus R.Tectonics, Mountain Building, Subduction, and Volcanism in South-Central Alaska[M].U.S.Geological Survey, 2003.

    Google Scholar

    [15] Wyld S J, Umhoefer P, Wright J E. Reconstructing Northern Cordilleran Terranes along Known Cretaceous and Cenozoic Strike-slip Faults: Implications for BAJA BC Hypothesis and Other Models.

    Google Scholar

    [16] Parsons T, McCarty J, Thompson GA. Very different crUstal response of extreme extension in the southern basin and range and Colorado plaleou transition Pacific Section. American Association of Petroleum Geologists Publication GB78.

    Google Scholar

    [17] Lisowski M, Savage JC, Prescott WH.The velocity field along the san Andreas Fault in central and southern California.J.Geophys[J].Res., 1996, 96(B5):585~611.

    Google Scholar

    [18] Nelson M R, Jones EH.Paleomagnetism and crustal rotations along a shear zone, Las Vegas Rangs, South Nevada[J].Tectonics, 1987, 6:13~33. doi: 10.1029/TC006i001p00013

    CrossRef Google Scholar

    [19] Martel SJ.Formation of compound strike-slip fault zones, Mount Abbot quadrangle, California[J].J.Struct.Geol., 1990, 12 (7):869~882. doi: 10.1016/0191-8141(90)90060-C

    CrossRef Google Scholar

    [20] Schwartg DP.Paleoseismicify, persistence of segments and temporal clustering of large earthquakes—example from the San Andres, Wasatch, and lost River fault zone.USGS Open-file Report, 1989, (315):361~375.

    Google Scholar

    [21] Caire A.Geotectonique giratoire[J].Geologie en Mijnbouw, 1979.58(2):241~252.

    Google Scholar

    [22] Pindell J, Kennan L.Kinematic Evolution of the Gulf of Mexico and Caribbean.GCAGST, 2001.

    Google Scholar

    [23] Moran-Zenteno, Dante J.et al.Timing and petrogenesis of Tertiary silicic volcanism in relation to strike-slip tectonics in the northcontrail part of Sierra Madre Del Sur, Mexico.GSA, 2003.

    Google Scholar

    [24] Alniz-àlvarez SA, Nieto-Samaniego AF, Morá n-Zenteno DJ, Alba-Aldave L.Rhyolitic volcanism in extension zone associated with strike-slip tectonics in the Taxco region, southern Mexico[J].Journal of Volcanology and Geothermal Research, 118:1~14. doi: 10.1016/S0377-0273(02)00247-0

    CrossRef Google Scholar

    [25] Rivas JZ.Structural model of the Chiaps-Tabasco area (Southeast Mexico).CGG-ASI, 2003.

    Google Scholar

    [26] Pulliam J, et al. Aftershock study of the subduction to strike-slip transition of the North American-Caribbean Plate boundary in the Dominiean Republic. Earthquakes. IRIS. 5-year proposal. 2006.

    Google Scholar

    [27] Haenggi W T. Tectonic history of the Chihuahua trough, Mexico and adjacent USA. TOMO LIV, 2001, 28~66, Bolec de la Socieded Geologica, Mexicana.

    Google Scholar

    [28] 李东旭.地质力学与系统论[J].地球科学1989增刊.

    Google Scholar

    [29] Bajc J, et al.JHD and DD methods of relocation on the 1998 Bovae-KRN mountain (Slovenia) earthquake sequence and mechanics of moderate strike-slip events[J].Geophysical Research Abstracts, 2003, 5:07601.

    Google Scholar

    [30] Bertoluzza L, Perotti CR.A finite-element model of the stress field in strike-slip basins:implications for the Permian tectonics of the Southern Alps (Italy)[J].Tectonophysics, 1997, 208:185~197.

    Google Scholar

    [31] Fitgko F, Suhadolc P, Costa G.Realistic strong ground motion scenarios for seismic hazard assessment studies at the Alps-Dinarides Junction.University of Trieste.2003.

    Google Scholar

    [32] Meijninger BML.Geographic Information systems analysis of northwestern Greece:A tectonic investigation of northwestern Greece by means of remote sensing analysis and digital Cerrain analysis.Utrecht University, The Netherlands.2001.

    Google Scholar

    [33] Komac B. The Karst springs of the Kanin massif. Geografskizbornik, 2001, XLI. 2001.

    Google Scholar

    [34] Van Bemmelen RW.The Alpine loop of the Tethys zone.Tectonophysics, 1969, 8(2):107~113. doi: 10.1016/0040-1951(69)90084-5

    CrossRef Google Scholar

    [35] Vialon P, Rochette P, Menard G. Indentation and rotation in the western Alpine. In: Coward MP, Dietrich MP, Dietrich D, Park RG (eds. ), Alpine Tectonics. Special Publication Geological Society London, 1989, 45: 329~338.

    Google Scholar

    [36] Megerhoff Arther A et al. Surge Tectonics: A new hypothesis of Earth dynamics. In: S Chatterjee, N Hotton Ⅲ(eds), New Concepts in Global Tectonics. Texas: Texas Tech University Press. 1992, 367~371.

    Google Scholar

    [37] Papagachos BC, Comninakis PE. Models of Lithospheric interaction in the Aegean area. In: Biju-Duval B, Montadert L (eds), Structural History of the Mediterranean Basins. Paris: Edition Techniqe. 1977, 319~331.

    Google Scholar

    [38] Papagachos BC, et al.Fault plane solutions in the Aegean sea and the surrounding area and their tectonic implication.Bollettino di Geofisica Teorica ed Applicata—An International Journal of Earth Sciences, 1998, 39(3):199~218.

    Google Scholar

    [39] HessamiK, Koyi HA, Talbot CJ. The significance of strike-slip faulting in the basement of the Zagros fold and thrust belt (abstract). 2001, 24(1), Hans Ramberg Tectonic Laboratory, Institute of Earth S ciences, Uppsala University.

    Google Scholar

    [40] Inger S, Allen M, Blanc E, Hassami K, Talebian M, Jackson J. Regional-to reservoir-scale tectonic evolution of the Zagros Orogenic Belt (abstract), 2002, 24(1), Hans Ramberg Tectonic Laboratory, Institute of Earth Science, Uppsala University.

    Google Scholar

    [41] Hessami K. Tectonic History and present-day deformation in the Zagros fold-thrust belt. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 700, Uppsala. 2002.

    Google Scholar

    [42] Farhoudi G, Karing DE.Makran of Iron and Pakistan as an active arc system.Geodogy, 1997, 5(11):664~668.

    Google Scholar

    [43] Wellman HW.Active wrench fault of Iran, Afghanistan and Pakistan.Geologisch Rundschan, 1966, 55(2):719~735.

    Google Scholar

    [44] Lohr T.A Short Story about the Geological History of the Pamir —Review:Lothar Ratshbacher University of Mining and Technology, Freiberg, 2001.

    Google Scholar

    [45] 李海兵, Franck Valli, 许志琴, 杨经绥, Paul Tapponnier, Robin Lacassin, 陈松永, 戚学祥.Marie-Luce Chevalier.喀喇昆仑断裂的变形特征及构造演化[J].中国地质, 2006, 33(2):239~255. doi: 10.3969/j.issn.1000-3657.2006.02.002

    CrossRef Google Scholar

    [46] 许志琴, 等.青藏高原与大陆动力学—地体拼合、碰撞造山及高原隆升的深部驱动力[J].中国地质, 2006, 33 (2):221~238.

    Google Scholar

    [47] 李东旭, 周济元.地质力学导论[M].北京地质出版社, 1986, 223~225.

    Google Scholar

    [48] Beaudouin T, Bellier O, Sebrier M.Present-day stress and deformation field within the Sulawesi Island area (Indonesia): geodynamic implications.Société Géologique de France.2003, 174(3):305~317. doi: 10.2113/174.3.305

    CrossRef Google Scholar

    [49] 李四光.地质力学概论[M].科学出版社, 1962.

    Google Scholar

    [50] Dardji N, Villemin T, Rampnoux JP.Paleostress and strike-slip movement:the Gimandiri fault zone, West Java, Indonesia.1994.

    Google Scholar

    [51] Sich K.The Sumatran fault system, Indonesia.GIS Laboratory, 2006.

    Google Scholar

    [52] 钟大赉, 丁林.青藏高原的隆起过程以及机制讨论[J].中国科学(D辑), 1996, 26(4):289~295. doi: 10.3321/j.issn:1006-9267.1996.04.001

    CrossRef Google Scholar

    [53] 潘裕生.青藏高原的形成与隆升[J].地学前缘, 1999, 6(3):1~9. doi: 10.3321/j.issn:1005-2321.1999.03.002

    CrossRef Google Scholar

    [54] 肖序常, 李连栋主编.青藏高原的构造演化与隆升机制[M].广州:广东科技出版社, 2000.

    Google Scholar

    [55] 吴珍汉, 叶培盛, 胡道功, 等.青藏高原腹地的地壳变形与构造地貌形成演化过程[M].北京:地质出版社, 2003.

    Google Scholar

    [56] 潘桂堂、徐强、王立金, 等.青藏高原多岛弧—盆系格局机制[J].矿物岩石, 2001, 21(3).

    Google Scholar

    [57] 潘桂堂, 王立金.青藏高原区域构造格局及其多岛弧盆系的空间配置[J].沉积与特提斯地质, 2001, 21(3):1 ~26. doi: 10.3969/j.issn.1009-3850.2001.03.001

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(518) PDF downloads(3) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint