2011 Vol. 17, No. 4
Article Contents

TONG Heng-mao, WANG Ming-yang, HAO Hua-wu, ZHAO Dan. THEORETICAL DEVELOPMENT OF MAXIMUM EFFECTIVE MOMENT CRITERION[J]. Journal of Geomechanics, 2011, 17(4): 312-321.
Citation: TONG Heng-mao, WANG Ming-yang, HAO Hua-wu, ZHAO Dan. THEORETICAL DEVELOPMENT OF MAXIMUM EFFECTIVE MOMENT CRITERION[J]. Journal of Geomechanics, 2011, 17(4): 312-321.

THEORETICAL DEVELOPMENT OF MAXIMUM EFFECTIVE MOMENT CRITERION

  • Theoretical analysis shows that the Maximum Effective Moment, which cause preexisting cleavage or bedding to rotate, is related to the direction of pre-existing cleavage or bedding, and the Maximum Effective Moment Criterion (Meff=0.5(σ1-σ3) Lsin2αsinα, simplified as MEMC) proposed by Zheng et al is theoretically expanded to General Criterion of Maximum Effective Moment (MG-eff=0.5(σ1-σ3) Lsin2αsin (α-θ), simplified as GCMEM), which can be used to determine the Maximum Effective Moment with any direction of cleavage in this paper.MEMC is a special case of GCMEM when cleavage is parallel to maximum principal compressive stress (σ1).Theoretical analysis of GCMEM shows that:① when cleavage is parallel to σ1, there occur two values of Maximum Effective Moment symmetrically on either side of σ1 in the direction of ± 54.7°, and two conjugate deformation zone are predicted to appear with obtuse angle (109.4°) facing σ1 direction.② When cleavage is oblique to σ1, one Maximum Effective Moment, along which one deformation zone will appear, is predicted to occur on other side of σ1, and the angle between deformation zone and σ1 will decrease (from 54.7 ° when θ=0° reduced to 35.3° when θ=90°), while the angle between pre-existing cleavage and deformation zone will increase (from 54.7° when θ=0° increased to 125.3° when θ=90°) with pre-existing cleavage deviating from the σ1 direction.③ when cleavage is perpendicular to σ1, there also occur two values of Maximum Effective Moment symmetrically on either side of σ1 in the direction of ± 35.3°, but two conjugate deformation zone with acute angle (70.6°) facing σ1 direction.When the directions of pre-existing cleavage and deformation zone on principal strain surface and shear direction (sinistral or dextral) are known, the direction of maximum principal stress can be determined.GCMEM overcomes the incompatibility of MEMC with Slip Line Theory, and can be used to explain most of the kink zone development and other non-conjugate phenomena.It is expected to have wide application prospects in ductile deformation field.

  • 加载中
  • [1] ZHENG Ya-dong, WANG Tao, MA Ming-bo, et al.Maximum effective moment criterion and the origin of low-angle normal fault[J].Journal of Structural Geology, 2004, 26:271~285. doi: 10.1016/S0191-8141(03)00079-8

    CrossRef Google Scholar

    [2] 郑亚东, 王涛, 王新社.最大有效力矩准则的理论与实践[J].北京大学学报:自然科学版, 2007, 43(2):145~156.

    Google Scholar

    ZHENG Ya-dong, WNAG Tao, WANG Xin-she.Theory and practice of the Maximum Effective Moment Criterion (MEMC)[J].Acta Scientiarum Naturalium Universitatis Pekinensis, 2007, 43(2):145~156.

    Google Scholar

    [3] 郑亚东, 杜思清. 共轭扭折带夹角的定量分析[C]//马宗晋. 国际交流地质学术论文集---为二十七届国际地质大会撰写(2). 北京: 地质出版社, 1985: 187~190.

    Google Scholar

    ZHENG Ya-dong, DU Si-qing. A quantitative analysis of the angle between conjugate joint drags[C]//MA Zong-jin. Geological symposium for international interchange: Writing for the 27 th International Geological Conference (Ⅱ). Beijing: Geological Publishing House, 1985: 187~190.

    Google Scholar

    [4] ZHENG Ya-dong. A quantitative analysis of the angle between conjugate sets of extensional crenulation cleavage: An explanation of the low-angle normal fault development[C]//Abstract of 29 th IGC. 1992: 131.

    Google Scholar

    [5] Wernicke B.Low-angle normal faults in the Basin and Ridge Province:Nappe tectonics in an extending orogeny[J].Nature, 1981, 291:645~648. doi: 10.1038/291645a0

    CrossRef Google Scholar

    [6] Lister G S, Davis G A.The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, USA[J].Journal of Structural Geology, 1989, 11(1):65~94.

    Google Scholar

    [7] Wernicke B, Burchfiel B C.Modes of extensional tectonics[J].Journal of Structural Geology, 1982, 4(1):105~115.

    Google Scholar

    [8] Wernicke B, Axen G J.On the role of isostasy in the evolution of normal fault systems[J].Geology, 1988, 16(9):848~851. doi: 10.1130/0091-7613(1988)016<0848:OTROII>2.3.CO;2

    CrossRef Google Scholar

    [9] Anderson E M.The dynamics of faulting:2 nd edition[M].Edingburgh:Oliver and Boyd, 1951.

    Google Scholar

    [10] Ramsay J G.Shear zone geometry:A review[J].Journal of Structural Geology, 1980, 2(1-2):83~99. doi: 10.1016/0191-8141(80)90038-3

    CrossRef Google Scholar

    [11] Paterson M S, Weiss L E.Experimental deformation and folding in phyllite[J].GSA Bulletin, 1966, 77(4):343~374. doi: 10.1130/0016-7606(1966)77[343:EDAFIP]2.0.CO;2

    CrossRef Google Scholar

    [12] 郑亚东, 张进江, 王涛.实践中发展的最大有效力矩准则[J].地质力学学报, 2009, 15(3):209~217.

    Google Scholar

    ZHENG Ya-dong, ZHANG Jin-jiang, WANG Tao.The Maximum-Effective-Moment Criterion developing in practice[J].Journal of Geomechanics, 2009, 15(3):209~217.

    Google Scholar

    [13] Hill R.The mathematical theory of plasticity[M].Oxford:Oxford University Press, 1950.

    Google Scholar

    [14] Platt J P, Vissers R L M.Extensional structures in anisotropic rocks[J].Journal of Structural Geology, 1980, 2(4):397~410. doi: 10.1016/0191-8141(80)90002-4

    CrossRef Google Scholar

    [15] Price N J, Cosgrave J W.Analysis of geological structures[M].Cambridge:Cambridge University Press, 1990.

    Google Scholar

    [16] Johnson A M.Styles of folding:Mechanics and mechanisms of folding of natural elastic materials[M].New York:Elservier Scientific Publication Company, 1977.

    Google Scholar

    [17] Camerlo R H, Benson E F.Geometric and seismic interpretation of the Perdido fold belt:Northwestern deep-water Gulf of Mexico[J].AAPG Bulletin, 2006, 90(3):363~386. doi: 10.1306/10120505003

    CrossRef Google Scholar

    [18] 童亨茂, 孟令箭, 蔡东升, 等.裂陷盆地断层的形成和演化---目标砂箱模拟实验与认识[J].地质学报, 2009, 83(6):759~774.

    Google Scholar

    TONG Heng-mao, MENG Ling-jian, CAI Dong-sheng, et al.Fault formation and evolution in rift basins:Sandbox modeling and cognition[J].Acta Geologica Sinica, 2009, 83(6):759~774.

    Google Scholar

    [19] Reches Z.Analysis of faulting in three-dimensional strain field[J].Tectonophysics, 1978, 47(1-2):109-129. doi: 10.1016/0040-1951(78)90154-3

    CrossRef Google Scholar

    [20] Krantz R W.Multiple fault sets and three-dimensional strain:Theory and application[J].Journal of Structural Geology, 1988, 10(3):225~237. doi: 10.1016/0191-8141(88)90056-9

    CrossRef Google Scholar

    [21] Nieto-Samaniego, ángel F.Stress, strain and fault patterns[J].Journal of Structural Geology, 1999, 21(8-9):1065~1070. doi: 10.1016/S0191-8141(99)00016-4

    CrossRef Google Scholar

    [22] TONG Heng-mao, CAI Dong-sheng, WU Yong-ping, et al.Activity criterion of pre-existing fabrics in non-homogeneous deformation domain[J].Science China:Earth Science, 2010, 53(1):1~11.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(319) PDF downloads(2) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint